Scientists discover historic sample of bomb-grade plutonium

February 26, 2009

( -- Scientists in Washington state are reporting the surprise discovery of the oldest known sample of reactor-produced bomb-grade plutonium, a historic relic from the infancy of America’s nuclear weapons program. Their research, which also represents the first demonstration of how radioactive sodium can be used as a tool in nuclear forensics, appears in the current issue of ACS’ Analytical Chemistry.

In the new study, Jon Schwantes and colleagues note increased concern about the possibility of terrorists smuggling radioactive materials to make illegal nuclear weapons. As a result, scientists are stepping up efforts to identify and track the source of these radioactive materials using the advanced tools and techniques of a new field called “nuclear archaeology.”

The scientists describe efforts to determine the origin of an unknown sample of plutonium (Pu) found in 2004 in a bottle at a waste burial trench at the Hanford nuclear site in Washington. Hanford is the earliest location for U.S. plutonium production for nuclear weapons and now the focus of a massive environmental cleanup effort due to high levels of radioactive waste that remain at the site.

Using multiple pairs of “parent” Pu and “daughter” uranium (U) isotopes, the researchers were able to correct for chemical fractionation that occurred as a result of repackaging in 2004 and determine the age of the sample. Using this technique, they estimated that the Pu in the sample had been separated from U and fission products in 1944, making it the oldest known sample of bomb-grade plutonium produced in a reactor. The only older known samples of Pu-239 were produced by the late Glenn Seaborg and his associates in the beginning of the 1940's when the existence of the element was first confirmed and characterized.

The study identified the Clinton reactor in Oak Ridge, Tenn., as reactor of origin for this material, by comparing reactor burnup modeling results with measurements of minor Pu isotopes. These results were also supported by a series of historical documents tracking the material's movement from Oak Ridge and the processing at Hanford. “Aside from the historical significance of this find, this work provides the public a rare glimpse at a real-world example of the science behind and power of modern-day nuclear forensics,” the scientists note.

Provided by ACS

Explore further: New technology to speed cleanup of nuclear contaminated sites

Related Stories

New technology to speed cleanup of nuclear contaminated sites

December 30, 2010

Members of the engineering faculty at Oregon State University have invented a new type of radiation detection and measurement device that will be particularly useful for cleanup of sites with radioactive contamination, making ...

Plutonium at 150 years

December 17, 2012

Planning the future needs of the U.S. nuclear weapons stockpile as well as the nuclear weapons complex depends in part on maintaining confidence in the long-term stability of the pit, or core, of plutonium-239 residing inside ...

Physicists say there's an urgent need for nuclear detectives

February 17, 2008

A terrorist nuclear explosion devastates Manhattan, but no group takes credit. The pressure on the U.S. president to retaliate is intense. Acting on sketchy information, the president orders an attack, but it turns out to ...

Hospital scanner could curb nuclear waste threat

January 29, 2010

Medical equipment used for diagnosis of patients with heart disease and cancer could be a key weapon in stopping nuclear waste seeping into the environment, according to new research.

Turning a nuclear spotlight on illegal weapons material

October 27, 2006

Researchers at the National Institute of Standards and Technology (NIST) and Oak Ridge National Laboratory (ORNL) have demonstrated that they can cheaply, quickly and accurately identify even subnanogram amounts of weapon-grade ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.