Scientists prove graphene's edge structure affects electronic properties

February 15, 2009
Atomic resolution scanning tunneling microscope image of a nanometer scale piece of graphene on silicon. Photo courtesy Joseph Lyding

(PhysOrg.com) -- Graphene, a single-atom-thick sheet of carbon, holds remarkable promise for future nanoelectronics applications. Whether graphene actually cuts it in industry, however, depends upon how graphene is cut, say researchers at the University of Illinois.

Graphene consists of a hexagonal lattice of carbon atoms. While scientists have predicted that the orientation of atoms along the edges of the lattice would affect the material's electronic properties, the prediction had not been proven experimentally.

Now, researchers at the U. of I. say they have proof.

"Our experimental results show, without a doubt, that the crystallographic orientation of the graphene edges significantly influences the electronic properties," said Joseph Lyding, a professor electrical and computer engineering. "To utilize nanometer-size pieces of graphene in future nanoelectronics, atomically precise control of the geometry of these structures will be required."

Lyding and graduate student Kyle Ritter (now at Micron Technology Inc. in Boise, Idaho) report their findings in a paper accepted for publication in Nature Materials. The paper is to be posted on the journal's Web site on Sunday (Feb. 15).

To carry out their work, the researchers developed a method for cutting and depositing nanometer-size bits of graphene on atomically clean semiconductor surfaces like silicon.

Then they used a scanning tunneling microscope to probe the electronic structure of the graphene with atomic-scale resolution.

"From this emerged a clear picture that edges with so-called zigzag orientation exhibited a strong edge state, whereas edges with armchair orientation did not," said Lyding, who also is affiliated with the university's Beckman Institute and the Micro and Nanotechnology Laboratory.

"We found that pieces of graphene smaller than about 10 nanometers with predominately zigzag edges exhibited metallic behavior rather than the semiconducting behavior expected from size alone," Lyding said. "This has major implications in that semiconducting behavior is mandatory for transistor fabrication."

Unlike carbon nanotubes, graphene is a flat sheet, and therefore compatible with conventional fabrication processes used by today's chipmakers. But, based on the researchers' experimental results, controlled engineering of the graphene edge structure will be required for obtaining uniform performance among graphene-based nanoelectronic devices.

"Even a tiny section of zigzag orientation on a 5-nanometer piece of graphene will change the material from a semiconductor into a metal," Lyding said. "And a transistor based on that, will not work. Period."

Provided by University of Illinois at Urbana-Champaign

Explore further: Realization of a novel material that can conduct magnetic waves on its edge, but not within its bulk

Related Stories

Organic semiconductors get weird at the edge

October 6, 2015

As the push for tinier and faster electronics continues, a new finding by scientists at the University of British Columbia (UBC) and Monash University could help inform the design of the next generation of cheaper, more efficient ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Ant
not rated yet Feb 15, 2009
the last section has an interesting comment quote "Even a tiny section of zigzag orientation on a 5-nanometer piece of graphene will change the material from a semiconductor into a metal" is this what makes a metal a metal the edge structure of their molicules?
poi
5 / 5 (2) Feb 15, 2009
the last section has an interesting comment quote "Even a tiny section of zigzag orientation on a 5-nanometer piece of graphene will change the material from a semiconductor into a metal" is this what makes a metal a metal the edge structure of their molicules?

look at your periodic table. C is non-metal.
In the article, what is referred to is only so for graphene in the nano scale. Carbon under different molecular structures takes on different forms: graphite or diamond (organic or inorganic). Both of course are not metals, but when in 2D, i.e. graphene, may take either a semiconductor or metallic characteristic depending on orientation.
ZeroDelta
not rated yet Feb 16, 2009
It seems that, as far as the electric field from atomic orbitals is concerned, the whole is more than the sum of it's parts.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.