SanDisk, Toshiba Develop 32-nanometer NAND Flash Technology

February 11, 2009
SanDisk, Toshiba Develop 32-nanometer NAND Flash Technology

SanDisk and Toshiba today announced the co-development of multi-level cell (MLC) NAND flash memory using 32-nanometer process technology to produce a 32-gigabit (Gb) 3-bits-per-cell (X3) memory chip. The breakthrough introduction is expected to quickly bring to market advanced technologies that will enable greater capacities and reduce manufacturing costs for products ranging from memory cards to Solid State Drives (SSD).

“The development of our third-generation 3-bits-per-cell technology on 32nm within one and a half years after the introduction of the first generation of 3-bits-per-cell on 56nm shows the incredibly fast pace necessary to be a world-class producer in today’s industry,” said Sanjay Mehrotra, co-founder and president, SanDisk. “This allows us to offer higher capacities at compelling form factors while reducing manufacturing costs.”

The 32Gb X3 on 32nm technology is the smallest NAND flash memory die reported so far, able to fit into the fingernail-sized microSD™ memory card format that has enjoyed widespread adoption in mobile phones and other consumer electronics devices. The 32nm 32Gb X3 is the highest density microSD memory die in the world, providing twice the capacity of a microSD chip on 43nm while still maintaining a similar die area. Advances in 32nm process technologies and in circuit design significantly contributed to a 113mm2 die-size while SanDisk’s patented All-Bit-Line (ABL) architecture has been a key enabler to maintain a competitive X3 write performance.

“The 32nm X3 die’s small footprint and incredible density will allow for the production of higher capacities of microSD cards than could be manufactured without this technology,” said Yoram Cedar, executive vice president, OEM business unit and corporate engineering, SanDisk. “The microSD form factor has grown in popularity due to rising demand for high capacity storage on mobile phones, and X3 will enable us to bring exciting new products to this market.”

32nm is the most advanced flash memory technology node to date, requiring advanced solutions to manage the challenges of feature size scaling. 32nm technology combines several innovative technologies to reduce die area more aggressively than the trend-line of Moore’s Law.

SanDisk and Toshiba today presented a joint paper on 32nm 32Gb X3 NAND flash memory at the 2009 International Solid State Circuits Conference (ISSCC), highlighting the technical advancements that made 32nm possible. Production for the 32nm 32Gb X3 is expected to begin in the second half of 2009.

Provided by Sandisk

Explore further: WALDIO mode to improve smartphone life explained at USENIX

Related Stories

WALDIO mode to improve smartphone life explained at USENIX

July 11, 2015

Researchers from South Korea's Hanyang University and the Ulsan National Institute of Science and Technology (UNIST) have got together to resolve the journaling of journal anomaly in the Android IO stack. Translation: They ...

Imec and Panasonic demonstrate breakthrough RRAM cell

July 14, 2015

Imec and Panasonic Corp. announced today that they have fabricated a 40nm TaOx-based RRAM (resistive RAM) technology with precise filament positioning and high thermal stability. This breakthrough result paves the way to ...

ARM De-risks Design Cycle for IoT Chips

June 1, 2015

ARM has unveiled a new hardware subsystem to enable the fast and efficient development of highly customized chips for smart connected devices. The ARM IoT subsystem for ARM Cortex-M processors is optimized for use with ARM's ...

SDSC's 'Comet' supercomputer enters early operations phase

April 30, 2015

Comet, a new petascale supercomputer designed to transform advanced scientific computing by expanding access and capacity among traditional as well as non-traditional research domains, has transitioned into an early operations ...

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.