Reverse Chemical Switching of a Ferroelectric Film

February 25, 2009

(PhysOrg.com) -- Ferroelectric materials display a spontaneous electric polarization below the Curie temperature that can be reoriented, typically by applying an electric field. In this study, researchers from Argonne, Northern Illinois University, and The University of Pennsylvania have demonstrated that the chemical environment can control the polarization orientation in an ultrathin ferroelectric film.

This is complementary to recent predictions that polarization can affect surface chemistry and illuminates potential applications in sublithographic patterning and electrically tunable catalysts.

In situ synchrotron X-ray scattering measurements showed that high or low oxygen partial pressure induces outward or inward polarization, respectively, in an ultrathin PbTiO3 film. While X-ray scattering is not sensitive to interfacial charge from polarization, it is very sensitive to the atomic positions in the crystal structure of a ferroelectric film that determine its polarization.

The image shows hysteresis in the ferroelectric film structure as a function of oxygen partial pressure indicating polarization switching. The most intense (red) feature is the PbTiO3 Bragg peak. By following the behavior in situ, one sees that chemical potential affects ferroelectric film polarization in the same way as electric potential. In combination with ab initio based modeling, these experiments show that the chemical environment can play a dominant role in the behavior of nanoscale ferroelectrics.

More information:
• Wang et al., "Reversible Chemical Switching of a Ferroelectric Film," Phys. Rev. Lett., 102, 047601 (2009),
• J. Hinka, "A Viewpoint on Reversible Chemical Switching of a Ferroelectric Film," Physics. 2, 8 (2009) (online)

Provided by Argonne National Laboratory

Explore further: Shocking: Environmental chemistry affects ferroelectric film polarity the same way electric voltage does

Related Stories

Recommended for you

World's most sensitive dark matter detector completes search

July 21, 2016

The Large Underground Xenon (LUX) dark matter experiment, which operates beneath a mile of rock at the Sanford Underground Research Facility in the Black Hills of South Dakota, has completed its silent search for the missing ...

Weird quantum effects stretch across hundreds of miles

July 19, 2016

In the world of quantum, infinitesimally small particles, weird and often logic-defying behaviors abound. Perhaps the strangest of these is the idea of superposition, in which objects can exist simultaneously in two or more ...

Light-bulb moment for stock market behaviour

July 21, 2016

University of Adelaide physicists have discovered that the timing of electronic orders on the stock market can be mathematically described in the same way as the lifetime of a light bulb.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.