New findings reveal how influenza virus hijacks human cells

February 4, 2009
High resolution image of the key domain of the influenza virus polymerase. The active site responsible for RNA cleavage is shown in red. Its activity is crucial for the virus to multiply in human cells. Credit: Stephen Cusack, EMBL

Influenza is and remains a disease to reckon with. Seasonal epidemics around the world kill several hundred thousand people every year. In the light of looming pandemics if bird flu strains develop the ability to infect humans easily, new drugs and vaccines are desperately sought. Researchers at the European Molecular Biology Laboratory (EMBL) and the joint Unit of Virus Host-Cell Interaction (UVHCI) of EMBL, the University Joseph Fourier (UJF) and the National Centre for Scientific Research (CNRS), in Grenoble, France, have now precisely defined an important drug target in influenza. In this week's Nature they publish a high-resolution image of a crucial protein domain that allows the virus to hijack human cells and multiply in them.

When the influenza virus infects a host cell its goal is to produce many copies of itself that go on to attack even more cells. A viral enzyme, called polymerase, is key to this process. It both copies the genetic material of the virus and steers the host cell machinery towards the synthesis of viral proteins. It does this by stealing a small tag, called a cap, from host cell RNA molecules and adding it onto its own. The cap is a short extra piece of RNA, which must be present at the beginning of all messenger RNAs (mRNAs) to direct the cell's protein-synthesis machinery to the starting point. The viral polymerase binds to host cell mRNA via its cap, cuts the cap off and adds it to the beginning of its own mRNA - a process known as 'cap snatching'. But exactly how the polymerase achieves this and which of the three subunits of the enzyme does what, has remained controversial.

Researchers of the groups of Rob Ruigrok at the UVHCI and Stephen Cusack at EMBL have now discovered that part of a polymerase subunit called PA is responsible for cleaving the cap off the host mRNA.

"Our results came as a big surprise, because everybody thought that the cleaving activity resides in a different part of the polymerase," explains Rob Ruigrok, Vice-Director of the UVHCI.

"These new insights make PA a promising antiviral drug target. Inhibiting the cleaving of the cap is an efficient way to stop infection, because the virus can no longer multiply. Now we know where to focus drug design efforts," adds Stephen Cusack, Head of EMBL Grenoble and Director of the UVHCI.

The researchers produced crystals of the crucial PA domain and examined them with the powerful X-ray beams of the European Synchrotron Radiation Facility (ESRF) in Grenoble. The high-resolution image of the domain reveals the individual amino acids that constitute the active site responsible for cleaving the RNA; information that could guide the design of future antiviral drugs.

Only a few months ago the same group of scientists had already identified another key part of the influenza polymerase; a domain in the subunit called PB2 that recognises and binds to the host cap. Taken together the two findings provide a close-to-complete picture of the cap snatching mechanism that allows the influenza virus to take control over human cells.

Source: European Molecular Biology Laboratory

Explore further: Viral protein in their sights: Advanced imaging reveals key structure of Ebola and other RNA viruses

Related Stories

Arabidopsis uses molecular decoy to trick pathogens

June 8, 2015

In the animal kingdom, predators use a full range of strategies, such as camouflage, speed and optical illusions, to catch their prey. Meanwhile, prey species resort to the same tactics to escape from their predators. Such ...

Scientists announce top 10 new species for 2015

May 21, 2015

A cartwheeling spider, a bird-like dinosaur and a fish that wriggles around on the sea floor to create a circular nesting site are among the species identified by the SUNY College of Environmental Science and Forestry (ESF) ...

Sailing in a sea of microbes

March 1, 2012

(PhysOrg.com) -- Researchers led by Matt Sullivan at the University of Arizona are among the first to dive into the world of viruses drifting through the world's oceans.

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.