Researchers shed light on how proteins find their shapes

February 23, 2009
The UCSD model of the folding energy landscape for cytochrome c. The landscape was probed experimentally at Caltech, using time-resolved fluorescence energy transfer from six donor labels (represented as single spheres of differing colors) to the heme acceptor. [Credit: Peter Weinkam, UCSD]

(PhysOrg.com) -- Researchers from the California Institute of Technology (Caltech) and the University of California at San Diego (UCSD) have brought together UCSD theoretical modeling and Caltech experimental data to show just how amino-acid chains might fold up into unique, three-dimensional functional proteins.

Their insights were recently published in the February 10 issue of the Proceedings of the National Academy of Sciences (PNAS).

The paper details the matching of a series of protein-folding models created by the UCSD team (led by Peter Wolynes, UCSD professor of chemistry and biochemistry and physics) with experimental data gathered using a novel technique created by the Caltech team (led by Faculty Associate in Chemistry Jay Winkler and Harry Gray, Caltech's Arnold O. Beckman Professor of Chemistry and founding director of the Beckman Institute).

The Winkler-Gray method of watching proteins as they crumple and fold involves the use of a picosecond camera that captures fluorescent flashes as a laser pulse excites a donor probe, which emits light and transfers that light to an acceptor probe. The distance between the donor and acceptor change as the amino-acid chain transforms itself into a three-dimensional protein.

In the PNAS paper, the two groups combined the Caltech experimental technique--first described in a 2002 paper published in the Journal of the American Chemical Society--with Wolynes's protein-folding models to see if they could come up with the precise folding pattern of cytochrome c, a protein that is part of the mitochondrial electron-transfer chain that turns food into cellular energy.

At first the models and the experimental data seemed to be describing two entirely different things, according to Winkler. "The researchers had to account for charge-charge interactions between amino acids that appear to be important--the way that like charges repel and opposite charges attract," he explains. "And they had to consider the hydrophobic interactions--the way that oily parts of the proteins like to stick together but are repelled by the watery parts. When their models took account of these interactions, it fit the experimental data."

"It was the first time anyone has been able to develop a theoretical model able to account for the results we've been getting with our time-resolved energy-transfer experiments," adds Gray.

Other coauthors on the PNAS paper, entitled "Electrostatic effects on funneled landscapes and structural diversity in denatured protein ensembles," are Patrick Weinkam from UCSD and Ekaterina Pletneva, formerly at Caltech and now at Dartmouth College.

Source: California Institute of Technology

Explore further: Understanding the iliotibial band

Related Stories

Understanding the iliotibial band

August 27, 2015

For many people, it's the source of a nagging—and painful—injury, but for Carolyn Eng, the IT band is an intriguing mystery, one she may be close to solving.

Biophysicists take small step in quest for 'robot scientist'

August 25, 2015

Biophysicists have taken another small step forward in the quest for an automated method to infer models describing a system's dynamics - a so-called robot scientist. Nature Communications published the finding - a practical ...

Graphene oxide's secret properties revealed at atomic level

August 21, 2015

Since its discovery, graphene has captured the attention of scientists and engineers for its many extraordinary properties. But graphene oxide—an oxidized derivative of graphene—largely has been viewed as graphene's inferior ...

A detector shines in search for dark matter

August 20, 2015

Results of the XENON100 experiment are a bright spot in the search for dark matter. The team of international scientists involved in the project demonstrated the sensitivity of their detector and recorded results that challenge ...

Twin paradox on a chip

August 19, 2015

Per Delsing and his team want to combine theoretical calculations with experiments on superconducting circuits to gain an understanding of how things fit together at the nano level. Among other things, they plan to simulate ...

Recommended for you

A marine creature's magic trick explained

September 2, 2015

Tiny ocean creatures known as sea sapphires perform a sort of magic trick as they swim: One second they appear in splendid iridescent shades of blue, purple or green, and the next they may turn invisible (at least the blue ...

New method opens pathway to new drugs and dyes

September 2, 2015

Rice University scientists have developed a practical method to synthesize chemical building blocks widely used in drug discovery research and in the manufacture drugs and dyes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.