A Pocketful of Uranium: Construction of a Selective Uranium-Binding Protein

Feb 12, 2009

(PhysOrg.com) -- The use of uranium as a nuclear fuel and in weapons increases the risk that people may come into contact with it, and the storage of radioactive uranium waste poses an additional environmental risk. However, radioactivity is not the only problem related to contact with uranium; the toxicity of this metal is generally more dangerous to human health.

Researchers are still looking for simple, effective methods for the sensitive detection and effective treatment of uranium poisoning. Researchers led by Chuan He at the University of Chicago and Argonne National Laboratory (USA) have now developed a protein that binds to uranium selectively and tightly. As reported in the journal Angewandte Chemie, it is based on a bacterial nickel-binding protein.

In oxygen-containing, aqueous environments, uranium normally exists in the form of the uranyl cation (UO22+), a linear molecule made of one uranium atom and two terminal oxygen atoms. The uranyl ion also likes to form coordination complexes. It prefers to surround itself with up to six ligands arranged in a plane around the ion’s “equator”. The research team thus chose to develop a protein that offers the uranyl ion a binding cavity in which it is surrounded by the protein’s side-groups in the manner it prefers.

As a template, the scientists used the protein NikR (nickel-responsive repressor) from E. coli, a regulator that reacts to nickel ions. When NikR is loaded with nickel ions, it binds to a special DNA sequence. This represses transcription of the neighboring genes, which code for proteins involved in nickel uptake. If no nickel is present in the bacteria, NikR does not bind to the DNA.

The nickel ion is located in a binding cavity in which it is surrounded by a square-planar arrangement of binding groups. By using several mutation steps, the researchers generated a new protein that can bind uranium instead of nickel. Only three amino acids had to be changed. In the specially designed cavity, the uranyl group has six binding partners that surround it equatorially. In addition, there are spaces for the two terminal oxygen atoms of uranyl.

This NikR mutant only binds to DNA in the presence of uranyl, not in the presence of nickel or other metal ions. This confirms its selectivity for uranyl and may make it useful for the detection of uranyl and nuclear waste bioremediation. It also represents the first step towards developing potential protein- or peptide-based agents for treatment of uranium poisoning.

More information: Chuan He, University of Chicago, Engineering A Uranyl-Specific Binding Protein from NikR, Angewandte Chemie International Edition, doi: 10.1002/anie.200805262

Provided by Wiley

Explore further: New CMI process recycles magnets from factory floor

Related Stories

Cracking the sea cucumber code

29 minutes ago

The export value of Australian Holothurians (better known as humble sea cucumbers) is rising after Flinders researchers start to unravel their nutritional and medicinal value.

Device could detect driver drowsiness, make roads safer

9 minutes ago

Drowsy driving injures and kills thousands of people in the United States each year. A device being developed by Vigo Technologies Inc., in collaboration with Wichita State University professor Jibo He and ...

First stars in the universe left a unique signature

39 minutes ago

Determining the chemical abundance pattern left by the earliest stars in the universe is no easy feat. A Lawrence Livermore National Laboratory (LLNL) scientist is helping to do just that.

Why we need to keep adding leap seconds

29 minutes ago

Today at precisely 10am Australian Eastern Standard time, something chronologically peculiar will take place: there'll be an extra second between 09:59:59 and 10:00:00.

Recommended for you

Scientists unravel elusive structure of HIV protein

5 minutes ago

HIV, or human immunodeficiency virus, is the retrovirus that leads to acquired immunodeficiency syndrome or AIDS. Globally, about 35 million people are living with HIV, which constantly adapts and mutates ...

New method can make cheaper solar energy storage

2 hours ago

Storing solar energy as hydrogen is a promising way for developing comprehensive renewable energy systems. To accomplish this, traditional solar panels can be used to generate an electrical current that splits ...

New CMI process recycles magnets from factory floor

13 hours ago

A new recycling method developed by scientists at the Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from ...

Chemists characterize 3-D macroporous hydrogels

16 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Substrates change nanoparticle reactivity

22 hours ago

(Phys.org)—Nanoscale materials tend to behave differently than their bulk counterparts. While there are many theories as to why this happens, technological advances in scanning tunneling microscopy (STM) ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Soylent
not rated yet Feb 12, 2009
All you have to do to dispose of very mildly radioactive uranium is to convert it into insoluble oxide form and put it back from whence it came.

But why would you ever want to?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.