A Pocketful of Uranium: Construction of a Selective Uranium-Binding Protein

Feb 12, 2009

(PhysOrg.com) -- The use of uranium as a nuclear fuel and in weapons increases the risk that people may come into contact with it, and the storage of radioactive uranium waste poses an additional environmental risk. However, radioactivity is not the only problem related to contact with uranium; the toxicity of this metal is generally more dangerous to human health.

Researchers are still looking for simple, effective methods for the sensitive detection and effective treatment of uranium poisoning. Researchers led by Chuan He at the University of Chicago and Argonne National Laboratory (USA) have now developed a protein that binds to uranium selectively and tightly. As reported in the journal Angewandte Chemie, it is based on a bacterial nickel-binding protein.

In oxygen-containing, aqueous environments, uranium normally exists in the form of the uranyl cation (UO22+), a linear molecule made of one uranium atom and two terminal oxygen atoms. The uranyl ion also likes to form coordination complexes. It prefers to surround itself with up to six ligands arranged in a plane around the ion’s “equator”. The research team thus chose to develop a protein that offers the uranyl ion a binding cavity in which it is surrounded by the protein’s side-groups in the manner it prefers.

As a template, the scientists used the protein NikR (nickel-responsive repressor) from E. coli, a regulator that reacts to nickel ions. When NikR is loaded with nickel ions, it binds to a special DNA sequence. This represses transcription of the neighboring genes, which code for proteins involved in nickel uptake. If no nickel is present in the bacteria, NikR does not bind to the DNA.

The nickel ion is located in a binding cavity in which it is surrounded by a square-planar arrangement of binding groups. By using several mutation steps, the researchers generated a new protein that can bind uranium instead of nickel. Only three amino acids had to be changed. In the specially designed cavity, the uranyl group has six binding partners that surround it equatorially. In addition, there are spaces for the two terminal oxygen atoms of uranyl.

This NikR mutant only binds to DNA in the presence of uranyl, not in the presence of nickel or other metal ions. This confirms its selectivity for uranyl and may make it useful for the detection of uranyl and nuclear waste bioremediation. It also represents the first step towards developing potential protein- or peptide-based agents for treatment of uranium poisoning.

More information: Chuan He, University of Chicago, Engineering A Uranyl-Specific Binding Protein from NikR, Angewandte Chemie International Edition, doi: 10.1002/anie.200805262

Provided by Wiley

Explore further: Engineer develops real-time listeria biosensor prototype

Related Stories

Architects to hatch Ecocapsule as low-energy house

9 hours ago

Where people call home depends on varied factors, from poverty level to personal philosophy to vanity to community pressure. Ecocapsule appears to be the result of special factors, a team of architects applying ...

California farmers agree to drastically cut water use

13 hours ago

California farmers who hold some of the state's strongest water rights avoided the threat of deep mandatory cuts when the state accepted their proposal to voluntarily reduce consumption by 25 percent amid ...

Apple may deliver ways to rev up the iPad, report says

13 hours ago

MacRumors last month said that the latest numbers from market research firm IDC's Worldwide Quarterly Tablet Tracker revealed Apple stayed on as the largest vendor in a declining tablet market. The iPad ...

Recommended for you

Faster, portable microbial analysis in the field

3 hours ago

Until recently, it took hours – sometimes days – to analyze biological samples after they were frozen in the field and brought back to the laboratory. But now there is a faster, cheaper and smaller way ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Soylent
not rated yet Feb 12, 2009
All you have to do to dispose of very mildly radioactive uranium is to convert it into insoluble oxide form and put it back from whence it came.

But why would you ever want to?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.