Newly discovered gene plays vital role in cancer

February 27, 2009

( -- Gene p53 protects against cancer and is usually described as the most important gene in cancer research. However, scientists at the Swedish medical university Karolinska Institutet have now shown that a previously unknown gene, Wrap53, controls the activity of p53. As the regulation mechanism is relatively unexplored, the study opens up new routes to solving the mystery of cancer.

The p53 gene makes sure that cells with damaged DNA either repair themselves or commit suicide. If p53 itself is damaged, which is the case in roughly half of all cancer tumours, cells that are on their way to becoming cancerous are allowed to survive. Much cancer research revolves around the cell processes that p53 induces.

A group of researchers at Karolinska Institutet have now identified a new gene, called Wrap53, that regulates the activity of p53. The study, which is published in the journal Molecular Cell, demonstrates that Wrap53 gives rise to a molecule, called antisense RNA, the presence of which is necessary for the production of sufficient quantities of p53 protein in the event of DNA damage.

According to Marianne Farnebo, one of the scientists involved in the study, the results indicate that damage to Wrap53 can indirectly cause cancer. Wrap53 is therefore a new potential target for future cancer therapies.

"Mutations in the p53 gene contribute to about half of all cancer cases," she says. "In the remaining half, p53 is probably inactivated in other ways, such as damage to Wrap53 knocking out the production of the p53 protein."

The study is also one of the first to show how antisense RNA regulates genes in the human body. It is already a well-known fact that genes often control each other through the influence of their end products - usually proteins - on gene expression. With antisense regulation, control is effected instead through the production of mutually stabilising or destructive RNA molecules by genes with overlapping sequences, which determines whether or not the RNA molecules form proteins.

"At least 20 per cent of all genes can be regulated by antisense RNA, making it a potentially very common control mechanism," says Dr Farnebo. "But it's been difficult to show that antisense RNA really does serve important functions in the body, as we've managed to do in this study."

More information: "Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage", Salah Mahmoudi, Sofia Henriksson, Martin Corcoran, Cristina Méndez-Vidal, Klas G. Wiman & Marianne Farnebo, Molecular Cell, 27 February 2009.

Source: Karolinska Institutet

Explore further: New findings shed light on fundamental process of DNA repair

Related Stories

New findings shed light on fundamental process of DNA repair

September 8, 2015

Inside the trillions of cells that make up the human body, things are rarely silent. Molecules are constantly being made, moved, and modified—and during these processes, mistakes are sometimes made. Strands of DNA, for ...

Researchers discover strong break on cell division

July 7, 2015

The protein complex SWI/SNF that loosens tightly wrapped up DNA is also a strong inhibitor of cell division, at the time that cells take on specialized functions. Professor Sander van den Heuvel and PhD researcher Suzan Ruijtenberg ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.