Newly discovered gene could be a prime target in the most lethal brain cancer

February 18, 2009

Scientists at Duke University Medical Center and Johns Hopkins University have discovered mutations in two genes that could become therapeutic targets in malignant glioma, a dangerous class of brain tumors.

"The fact that the defective genes code for metabolic enzymes found only in malignant glioma, and not in normal tissue, could make the gene products therapeutic targets," says Hai Yan, M.D., Ph.D., lead author, an assistant professor in the Duke Department of Pathology. The findings are published in the Feb. 19 issue of the New England Journal of Medicine.

These genetic flaws might also help distinguish between primary and secondary glioblastoma multiforme (GBM), two subtypes of especially deadly malignant gliomas, with survival of only months after their diagnosis. Patients that have mutation of the genes, isocitrate dehydrogenase 1, gene 1 and 2 (IDH1 and IDH2), also had a longer survival time.

Because the researchers found this genetic mutation in several different stages of glioma development, "the results suggested that the IDH mutations are the earliest genetic changes that start glioma progression," said Darell Bigner, M.D., Ph.D., a co-author and director of the Preston Robert Tisch Brain Tumor Center at Duke University. Yet, patients with GBM or anaplastic astrocytoma who had the IDH mutations also were found to live longer than patients with those two cancers who lacked the mutations.

Malignant glioma appears to be two diseases, one that involves IDH mutations and one that doesn't, Yan explained. "As a cancer culprit gene, IDH mutations do contribute to cancer," he said. "Meanwhile, patients with the IDH mutation live longer with their cancer. The IDH mutation could serve as a biomarker that would help single out individuals who are likely to have better outcomes and receive different treatment."

He said that IDH mutations appear to define a specific subtype of GBMs, which is important so that physicians can plan specific treatment strategies to target this specific subtype of GBMs. "All GBMs are basically considered the same and are treated in the same way," Yan said. "Our studies clearly demonstrate that we need to start thinking about them as different. It is entirely possible that treatments that work for the IDH-mutation subtype would not work for the rest of GBMs, or vice versa." Knowing the tumor subtype has significant implications for how we plan future clinical trials for patients with GBMs, he added.

"I can say this is potentially one of the most important discoveries in genetic studies on malignant gliomas, in the low-grade to high-grade forms of the tumor," Yan said. "The results are so clear cut. I have been doing intensive genetic studies in brain cancers for six years, and I have never seen gene mutations as striking as in this study."

The researchers found IDH1 mutations in more than 70 percent of astrocytomas and olidgodendrogliomas (WHO grade II and III), as well as in secondary GBMs (WHO grade IV). Those without the IDH1 mutation had similar mutations in the closely related IDH2 gene. The mutations decreased IDH enzymatic activity. This signaled that IDH mutations are likely important in initiating malignant gliomas, but it is not known yet how they contribute to glioma development.

The findings are important in many ways. IDH can be used to distinguish primary GBMs, which do not arise from an existing tumor, from secondary GBMs, which arise from low-grade glioma tumors. The IDH1 mutation is missing in pilocytic astrocytomas, which means these particular brain tumors arise through a different mechanism.

Source: Duke University Medical Center

Explore further: Scientists refine model to predict dangerous errors in cell division

Related Stories

Genetic mutants alter entire biological communities

September 10, 2015

Scientists from Trinity College Dublin have discovered that one gene mutation in a single species can trigger dramatic changes in whole biological communities; changes can be as great as those caused by the extinction of ...

Scientists discover new system for human genome editing

September 25, 2015

A team including the scientist who first harnessed the revolutionary CRISPR-Cas9 system for mammalian genome editing has now identified a different CRISPR system with the potential for even simpler and more precise genome ...

Deep-diving whales could hold answer for synthetic blood

September 25, 2015

The ultra-stable properties of the proteins that allow deep-diving whales to remain active while holding their breath for up to two hours could help Rice University biochemist John Olson and his colleagues finish a 20-year ...

Study adds to evidence that viruses are alive

September 25, 2015

A new analysis supports the hypothesis that viruses are living entities that share a long evolutionary history with cells, researchers report. The study offers the first reliable method for tracing viral evolution back to ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.