Nanotube's 'tapestry' controls its growth

February 5, 2009
A new theory suggests nanotubes are 'woven' from twisting carbon threads. Credit: Morteza Bankehsaz/Rice University

HOUSTON -- (Feb. 5, 2009) -- Rice University materials scientists have put a new "twist" on carbon nanotube growth. The researchers found the highly touted nanomaterials grow like tiny molecular tapestries, woven from twisting, single-atom threads.

Carbon nanotubes are hollow tubes of pure carbon that measure about one nanometer, or one-billionth of a meter, in diameter. In molecular diagrams, they look like rolled-up sheets of chicken wire. And just like a roll of wire or gift-wrapping paper, nanotubes can be rolled at an odd angle with excess hanging off the end.

Though nanotubes are much-studied, their growth is poorly understood. They grow by "self assembly," forming spontaneously from gaseous carbon feedstock under precise catalytic circumstances. The new research, which appears online this week in the Proceedings of the National Academy of Sciences, finds a direct relationship between a nanotube's "chiral" angle -- the amount it's twisted -- and how fast it grows.

"Our study offers some clues about this intimate 'self assembly' process," said Rice's Boris Yakobson, professor in mechanical engineering and materials science and of chemistry. New theory suggests that each tube is 'woven' from many twisting threads. Each grows independently, with new atoms attaching themselves to the exposed thread ends. The more threads there are, the faster the whole tapestry grows.

Yakobson, the lead researcher on the project, said the new formula's predictions have been borne out by a number of laboratory reports. For example, the formula predicts that nanotubes with the largest chiral angle will grow fastest because they have the most exposed threads -- something that's been shown in several experiments.

"Chirality is one of the primary determinants of a nanotube's properties," said Yakobson. "Our approach reveals quantitatively the role that chirality plays in growth, which is of great interest to all who hope to incorporate nanotubes into new technologies."

Source: Rice University

Explore further: Taming carbon nanotubes

Related Stories

Taming carbon nanotubes

February 7, 2011

Carbon nanotubes have many attractive properties, and their structure and areas of application can be compared with those of graphene, the material for whose discovery the most recent Nobel Prize was awarded. In order to ...

Video shows nanotube spins as it grows (w/ Videos)

July 27, 2009

(PhysOrg.com) -- New video showing the atom-by-atom growth of carbon nanotubes reveals they rotate as they grow, much like the halting motion of a mechanical clock's second hand. Published online this month by researchers ...

Nanotube growth theory experimentally confirmed

January 30, 2012

(PhysOrg.com) -- The Air Force Research Laboratory in Dayton, Ohio, has experimentally confirmed a theory by Rice University Professor Boris Yakobson that foretold a pair of interesting properties about nanotube growth: That ...

Researchers Grow 7 mm Carbon Nanotube Array

November 29, 2006

Nanotechnology revolves around the creation of technology — films, materials, devices, applications and systems — on a scale of 1–100 nanometers. But what is a nanometer? A nanometer is one billionth of a meter or ...

Calcium carbonate templates for drug delivery

July 3, 2012

(Phys.org) -- The fast and targeted delivery of drugs to the focus of a disease could soon be made easier. Helmuth Möhwald and his colleagues from the Max Planck Institute of Colloids and Interfaces in Golm, Potsdam, ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

Neuromorphic computing mimics important brain feature

August 18, 2016

(Phys.org)—When you hear a sound, only some of the neurons in the auditory cortex of your brain are activated. This is because every auditory neuron is tuned to a certain range of sound, so that each neuron is more sensitive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.