Nanotechnology used to probe effectiveness of antibiotics

Feb 04, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic is effective against bacteria.

Bacteria such as MRSA (commonly known as Golden Staph) are becoming increasingly resistant to antibiotics, posing a major community health problem.

Professor Matt Cooper, the Australian in the team, has this week joined the Institute for Molecular Bioscience at UQ on a $4 million Australia Fellowship.

Through the fellowship, he will establish a research program in the development of antibiotics and antifungals that are active against drug-resistant pathogens, in particular those responsible for hospital-acquired infections.

“It order to attack this problem we need to understand not only the ways in which bacteria develop and exhibit resistance to antibiotics, but also how new antibiotics can work to kill or slow the growth of resistant bacteria,” Professor Cooper said.

To study antibiotic action, the London team made nano-probes coated with molecules found in bacterial cell walls from normal bacteria and bacteria resistant to antibiotics.

They then added doses of the “last resort” antibiotic, vancomycin, to the system and found that probes from normal bacteria were stressed and changed shape, whereas probes from resistant bacteria were only weakly affected. These bent probes could be detected with a laser, indicating that the antibiotic was applying a force to the surface.

This allowed the researchers to quickly assess the effectiveness of an antibiotic and propose new ways in which antibiotics may be acting to cause the bacteria to burst and die.

“This advance will help us to understand the mode of action of drugs targeted against resistant bacteria, and could also lead to rapid diagnostic tools and novel methods of investigating antibiotic action,” Dr Cooper said.

“There is only a tiny molecular difference between resistant and non-resistant bacteria. We now know that these probes can detect that difference, and can do so within minutes.”

The system was able to detect that it is 1,000 times harder for vancomycin to attach to resistant bacteria than to non-resistant bacteria.

The team are now screening other novel antibiotics with the goal of finding a drug that is able to bind strongly to resistant bacteria and cause substantial structural weaknesses to the cell wall.

University College London researcher Dr Rachel McKendry, who led the team, said the findings had implications for improving the response to the bacteria.

“Investigating both these binding and mechanical influences on the cells’ structure could lead to the development of more powerful and effective antibiotics in future,” Dr McKendry said.

The research was published late last year in the journal Nature Nanotechnology.

Provided by University of Queensland

Explore further: New electronic stent could provide feedback and therapy—then dissolve

Related Stories

Gel filled with nanosponges cleans up MRSA infections

May 18, 2015

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant ...

Bacteria cooperate to repair damaged siblings

May 21, 2015

A University of Wyoming faculty member led a research team that discovered a certain type of soil bacteria can use their social behavior of outer membrane exchange (OME) to repair damaged cells and improve ...

Horizontal gene transfer in E. coli

May 19, 2015

Escherichia coli O104 is an emergent disease-causing bacterium various strains of which are becoming increasingly well known and troublesome. The pathogen causes bloody diarrhea as well as and potentially fatal ...

Recommended for you

Self-replicating nanostructures made from DNA

3 hours ago

(Phys.org)—Is it possible to engineer self-replicating nanomaterials? It could be if we borrow nature's building blocks. DNA is a self-replicating molecule where its component parts, nucleotides, have specific ...

Non-aqueous solvent supports DNA nanotechnology

May 27, 2015

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based ...

Nanosilver and the future of antibiotics

May 27, 2015

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.