Nano-twinned copper: Chinese-Danish scientists develop super strong nanometals

February 4, 2009

Research shows that it is possible to produce copper about 4 times stronger than commercial material - and doing so while also having a ductile material. As the thermal and electrical conductivity are also good, the manufacturing of, for example, electrical conductors with improved mechanical properties looks promising.

The strength of metal depends on the microstructure - the finer the structure the stronger the metal. But one may wonder if this fundamental principle also applies to extremely fine structures?

Materials scientists worldwide have taken up this challenge and now a Chinese-Danish research collaboration has lead to a break-through in the understanding. The results are scientifically important, but also of interest to technology.

As expected, the strength of copper material increases when the structure becomes finer but when the structure dimension becomes smaller than 15 nanometers the metal unexpectedly becomes softer. The physical processes giving rise to this unusual softening have also been identified based on electron microscopy studies of the structure.

Super strong nanometals are perfect for continuation of the research collaboration between China and Denmark and their exploitation in practical applications are indeed promising.

Publication: The results have been published in the journal Science 30 Jan 2009 (vol. 323. no. 5914, pp. 607-610) entitled ”Revealing the maximum strength in nano-twinned copper.”

Provided by Technical University of Denmark

Explore further: Quadrocopter news: Flying machines build a bridge out of rope

Related Stories

Researchers put pressure on hydrogen

September 24, 2015

A National Ignition Facility (NIF) experimental campaign may have unlocked scientific secrets behind how hydrogen becomes metallic at high pressure.

Atomic fractals in metallic glasses

September 21, 2015

Metallic glasses are very strong and elastic materials that appear with the naked eye to be identical to stainless steel. But metallic glasses differ from ordinary metals in that they are amorphous, lacking an orderly, crystalline ...

Recommended for you

Gold nanomembranes resist bending in new experiment

October 9, 2015

The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and the Department of Energy's ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.