Nano-sonar uses electrons to measure under the surface

February 27, 2009
In a computer simulation, Jülich scientists succeeded in showing what shape these rings take on the crystal lattice of copper. Credit: Forschungszentrum Jülich

Just as sonar sends out sound waves to explore the hidden depths of the ocean, electrons can be used by scanning tunnelling microscopes to investigate the well-hidden properties of the atomic lattice of metals. As researchers from Göttingen, Halle and Jülich now report in the high-impact journal Science, they succeeded in making bulk Fermi surfaces visible in this manner. Fermi surfaces determine the most important properties of metals.

"Fermi surfaces give metals their personality, so to speak," explained Prof. Stefan Blügel, Director at the Jülich Institute of Solid State Research. Important properties, such as conductivity, heat capacity and magnetism, are determined by them. On the Fermi surfaces inside the atomic union, high-energy electrons are in motion. Depending on what form the surfaces have and what mobility is assigned to the electrons, they determine the physical properties of metals.

This is the Fermi surface of copper metal. The colors represent the curvature of the surface, which determines the propagation properties for electron waves. Credit: Martin Luther University Halle

In their latest publication, the researchers report on how they used a scanning tunnelling microscope to direct electrons into a copper sample. As electrons spread out like waves, they pass through the metal and are scattered and reflected at obstacles in the bulk, such as single cobalt atoms. "The overlap between incoming and outgoing waves is so strong," said Dr. Samir Lounis from Forschungszentrum Jülich who turned the theoretical calculations into an experiment, "that they can be measured as spherical patterns on the surface using the scanning tunnelling microscope.

The somewhat deformed rings on the surface allow us to draw direct conclusions on the shape of the Fermi surfaces and the depth of the cobalt atoms, similar to how sonar recognises the ocean floor by means of reflected sound waves. "We hope that more sophisticated methods will make it possible to gain a detailed understanding of deep impurities and interfaces between atomic lattices," explained Lounis. For his simulations of the scanning tunnelling experiment, he used the supercomputer known as JUMP in the Jülich Supercomputing Centre.

A scanning tunneling microscope recognizes spherical patterns on a copper surface (image section approx. nine times nine nanometers). These irregularities in electron distribution are caused by cobalt atoms deep inside the copper. Credit: Forschungszentrum Jülich

In a related article in the "Perspectives" section of "Science", the innovative approach is praised. A scanning tunnelling microscope is primarily used to characterise the surface of a sample. Thanks to the theoretical work in Jülich, it can now be used to gain a direct insight into the bulk of solids and to understand interesting effects in the nanoworld.

More information: Science, 27 February 2009, Vol 323, Issue 5918, Seeing the Fermi Surface in Real Space by Nanoscale Electron Focusing, Weismann et al.

Source: Helmholtz Association of German Research Centres

Explore further: Treetop leaves of tall trees store extra water

Related Stories

Treetop leaves of tall trees store extra water

November 2, 2015

A research team led by Associate Professor Ishii Roaki and Doctoral Student Azuma Wakana from the Kobe University Graduate School of Agricultural Science has discovered that the water storage tissue that they recently found ...

Mammoths might have declined due to mineral starvation

October 28, 2015

At the end of the Pleistocene, mammoths of Northern Eurasia used to experience chronic mineral hunger. They became extinct due to geochemical stress arising from deep abiotic changes in ecosystems. Most likely, they were ...

Manipulating wrinkles could lead to graphene semiconductors

October 23, 2015

Graphene has generally been described as a two-dimensional structure—a single sheet of carbon atoms arranged in a regular structure—but the reality is not so simple. In reality, graphene can form wrinkles which make the ...

Recommended for you

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

2 / 5 (1) Feb 28, 2009
Awesomely interesting.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.