Microfluidic Device Mimics Tumor Microenvironment, Helps Drug Discovery Efforts

February 23, 2009

One of the challenges that cancer researchers face in designing new antitumor agents is that of predicting how drug molecules will behave in the complex microenvironment that surrounds a tumor. In particular, tumors create all sorts of chemical and physical barriers that limit how much drug is able to enter a tumor, let alone reach cells deep within a tumor. Now, Neil Forbes, Ph.D., and his colleagues at the University of Massachusetts have built a microfluidic device that can mimic these chemical and physical barriers, providing researchers with a new screening tool that may help with the design of more effective anticancer drugs.

Dr. Forbes and his colleagues, who reported their findings in the journal Lab on a Chip, designed this device to reproduce the three-dimensionality of a tumor, including areas of low pH and regions that contain cells resistant to therapy. To create this device, the investigators tested seven different cell growth chamber designs, using various imaging technologies to determine how closely cell masses growing in the device mimicked the behavior of a tumor. From these experiments, the investigators were able to select a growth chamber design that caused cells to grow into tumor masses that displayed heterogeneity closely resembling that of native tumors.

The investigators then used the device to study how doxorubicin, a widely used and widely studied anticancer drug, diffuses into and through a tumor. The device accurately modeled doxorubicin diffusion as seen in humans treated with this drug. The device also was able to recreate the accumulation patterns of anticancer bacteria that actively penetrate a tumor.

This work was detailed in the paper “A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics.” An abstract of this paper is available at the journal’s Web site.

Provided by National Cancer Institute

Explore further: Capturing cell growth in 3-D

Related Stories

Capturing cell growth in 3-D

August 14, 2015

Replicating how cancer and other cells interact in the body is somewhat difficult in the lab. Biologists generally culture one cell type in plastic plates, which doesn't represent the dynamic cell interactions within living ...

NIST PET phantoms bring new accuracy to medical scans

July 29, 2015

Teaming with a medical equipment company, researchers at the National Institute of Standards and Technology (NIST) have demonstrated the first calibration system for positron emission tomography (PET) scanners directly tied ...

The truth about sharks

July 28, 2015

Danger: shark attack (or more properly, say scientists, shark bite). With sharks swimming ever closer to shore this summer—or seeming to—and crossing paths with surfers and bathers, what's going on?

The light of fireflies for medical diagnostics

July 22, 2015

In biology and medicine, we often need to detect biological molecules. For example, in cancer diagnostics, doctors need quick and reliable ways of knowing if tumor cells are present in the patient's body. Although such detection ...

Researcher uses microscale technology to isolate rare cells

June 17, 2015

In a blood sample taken from a cancer patient, there may be a single circulating tumor cell among hundreds of thousands of other cells. These tumor cells can provide valuable information about how cancer progresses, and could ...

Recommended for you

Study reveals how nanochannels select potassium ions

August 25, 2015

(Phys.org)—One of the mysteries in biology is how cells can selectively diffuse potassium across a membrane. Biological systems rely on a delicate balance between these potassium and sodium ion concentrations in the surrounding ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Feb 24, 2009
MITOSIS RATE is sensitive to as little as ONE DEGREE
CELSIUS! REDUCE THE TEMPERATURE AND YOU REDUCE THE RATE! I have tested this in fish and my own body. IF YOU COOL THE TUMOR IT WILL SHRINK! (An established tumor may require 10 degrees below body temp.)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.