Micro-RNAs Are Life’s Genetic Sculptors

Feb 26, 2009
When a micro-RNA is removed, genes governing muscle development shown in blue are activated within the embryo (IMAGE A). In the presence of micro-RNA, the genes are inactive (IMAGE B).

(PhysOrg.com) -- Yale scientists have found a way to study within a living organism the wonders of micro-RNAs - tiny bits of RNA that act like a sculptor and shape the activity of hundreds of genes. The work is reported in the March 1 edition of the journal Genes & Development.

The analysis of micro-RNA in the developing muscle tissue of a zebra fish embryo sheds new light on research and therapeutic potential of these tiniest of all genes, the authors say.

Micro-RNAs (miRNAs), snippets of genetic material usually associated with the production of proteins from DNA, are one of the hottest targets of scientific research because they can precisely regulate the activity of many important genes. So far, most researchers have studied their effects only in cell cultures and have found it difficult to map the extent of their influence throughout a living organism.

The Yale study, however, illustrates that two miRNAs influence the gene activity of hundreds of muscle genes to regulate the muscle contraction apparatus in the developing zebra fish embryo. They act like ubiquitous chisels, carving away material suppressing the expression of genes in precise parts of an organism, said Antonio J. Giraldez, the Lois and Franklin H. Top, Jr. Yale Scholar in the genetics department of the Yale School of Medicine and senior author of the study. But some genes are turned on in their absence, allowing for the precise development of muscle tissue.

“It is as if these micro-RNAs are putting the final touch on evolution’s artwork,’’ Giraldez said.

Micro-RNAs are the smallest genes known, with only 22 building blocks or nucleotides, while most genes average more than 1000 nucleotides. Unlike most genes that are encoded as DNA and produce proteins, these tiny genes act by controlling much larger messenger RNAs, which carry the protein-making instructions of the DNA. Although micro-RNAs account for only about four percent of genes, each one can regulate hundreds of genes.

“It is likely that microRNAs have deep implications not only in how humans and animals are made, but in the development of human diseases,” said Giraldez.

For instance, the same miRNAs that in this study regulate muscle function during development can also modify the metastatic potential of tumor cells in mice.

Other Yale researchers on the paper were lead author Yuichiro Mishima, Alison A. Staton, Carlos Stahlhut, Chong Shou, Chao Cheng, and Mark Gerstein.

The Muscular Dystrophy Association, Ms. Louis and Dr. Franklin Top Jr. and the Yale Scholar Program funded the study.

Citation: Genes & Development, March 1, 2009

Provided by Yale University

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

C is for chicken (and campylobacter)

Jun 18, 2015

The Cambridge Animal Alphabet series celebrates Cambridge's connections with animals through literature, art, science and society. Here, C is for Chicken – a popular source of protein that carries a hidden ...

Watching worms will help humans age more gracefully

May 26, 2015

The plot of many a science fiction TV series or movie revolves around the premise that people traveling long distances in space age more slowly than their counterparts on Earth. Now, tiny worms who spent ...

Recommended for you

Researchers discover new mechanism of DNA repair

9 hours ago

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Stopping Candida in its tracks

22 hours ago

Scientists are one step closer to understanding how a normally harmless fungus changes to become a deadly infectious agent.

New technique maps elusive chemical markers on proteins

Jul 02, 2015

Unveiling how the 20,000 or so proteins in the human body work—and malfunction—is the key to understanding much of health and disease. Now, Salk researchers developed a new technique that allows scientists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.