No longer a gray area: Our hair bleaches itself as we grow older

February 23, 2009

Wash away your gray? Maybe. A team of European scientists have finally solved a mystery that has perplexed humans throughout the ages: why we turn gray. Despite the notion that gray hair is a sign of wisdom, these researchers show in a research report published online in The FASEB Journal that wisdom has nothing to do with it. Going gray is caused by a massive build up of hydrogen peroxide due to wear and tear of our hair follicles. The peroxide winds up blocking the normal synthesis of melanin, our hair's natural pigment.

"Not only blondes change their hair color with hydrogen peroxide," said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal. "All of our hair cells make a tiny bit of hydrogen peroxide, but as we get older, this little bit becomes a lot. We bleach our hair pigment from within, and our hair turns gray and then white. This research, however, is an important first step to get at the root of the problem, so to speak."

The researchers made this discovery by examining cell cultures of human hair follicles. They found that the build up of hydrogen peroxide was caused by a reduction of an enzyme that breaks up hydrogen peroxide into water and oxygen (catalase). They also discovered that hair follicles could not repair the damage caused by the hydrogen peroxide because of low levels of enzymes that normally serve this function (MSR A and B).

Further complicating matters, the high levels of hydrogen peroxide and low levels of MSR A and B, disrupt the formation of an enzyme (tyrosinase) that leads to the production of melanin in hair follicles. Melanin is the pigment responsible for hair color, skin color, and eye color. The researchers speculate that a similar breakdown in the skin could be the root cause of vitiligo.

"As any blue-haired lady will attest, sometimes hair dyes don't quite work as anticipated," Weissmann added. "This study is a prime example of how basic research in biology can benefit us in ways never imagined."

More information: J. M. Wood, H. Decker, H. Hartmann, B. Chavan, H. Rokos, J. D. Spencer, S. Hasse, M. J. Thornton, M. Shalbaf, R. Paus, and K. U. Schallreuter. Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J. doi:10.1096/fj.08-125435. www.fasebj.org/cgi/content/abstract/fj.08-125435v1

Source: Federation of American Societies for Experimental Biology

Related Stories

Recommended for you

For faster battery charging, try a quantum battery?

August 3, 2015

(Phys.org)—Physicists have shown that a quantum battery—basically, a quantum system such as a qubit that stores energy in its quantum states—can theoretically be charged at a faster rate than conventional batteries. ...

Sundew discovery on Facebook makes plant science news

August 3, 2015

A new species of sundew has been discovered on Facebook. The find is a carnivorous sundew, Drosera magnifica. The new discovery comes from a single mountaintop in southeastern Brazil—the largest New World sundew.

Caterpillar chemical turns ants into bodyguards

August 3, 2015

A trio of researchers with Kobe University in Japan has found that lycaenid butterfly caterpillars of the Japanese oakblue variety, have dorsal nectary organ secretions that cause ants that eat the material to abandon their ...

Researchers investigate increased ocean acidification

August 3, 2015

The primary cause of global ocean acidification is the oceanic absorption of CO2 from the atmosphere. Although this absorption helps to mitigate some of the effects of anthropogenic climate change, it has resulted in a reduction ...

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
not rated yet Feb 23, 2009
A simple rinse in potassium permanganate will restore your hair color... er... maybe
DozerIAm
not rated yet Feb 24, 2009
Well, it won't restore the hair color because that damage is already done. But if the rince actually gets into the follicles maybe it would counter the bleaching effect on hair going forward.
LariAnn
1 / 5 (1) Feb 24, 2009
Remember those detergents with enzymes? How about a hair rinse that includes catalase and MSR A and B? Use it morning and night and over time, your hair would get back to normal color?
googleplex
not rated yet Feb 24, 2009
The cool thing is it would not make the normal hair darker. The other point is - if they can cultural hair cells then surely they can cure baldness?!
Now they need to find what the trigger is for turning off the catalase production.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.