Study Links Photosynthesis Genes to Marine Virus Fitness

Feb 04, 2009

(PhysOrg.com) -- A recent Northeastern University study has shown, for the first time, the effect of individual genes on the fitness of a marine species at the ecosystem level. Using his innovative computer simulation model, engineering professor Ferdi Hellweger found that eliminating photosynthesis genes from viruses that attack important marine photosynthetic bacterial organisms will negatively impact the fitness of these viruses, ultimately killing them.

The findings, published in the journal Environmental Microbiology, have led to a new interdisciplinary field called “systems bioecology.” Combining systems biology and ecology, systems bioecology uses computer simulation to better understand the role of individual genes at the ecosystem scale.

With his computer simulation model, Hellweger “knocked out” the photosynthesis genes of cyanophages (viruses that attack marine cyanobacteria species such as Synechococcus and Prochlorococcus) to compare the fitness-level of these viruses to those containing the genes. Simulating a ten-year time span, he found that viruses without the photosynthesis genes were dead while the ones with the genes present survive.

The findings demonstrate that the fitness of cyanophage viruses is positively affected by the presence of photosynthesis genes.

Synechococcus and Prochlorococcus are known to be the most abundant photosynthetic organisms on Earth and play a major role in our carbon and climate cycles and the ocean ecosystem. Thus, finding out what factors influence the fitness and destructive impact of marine viruses on these bacteria is crucial in order to better understand the ecosystem.

The innovative computer simulation model can be expanded and modified using different genes and applying it to different species of other marine bacteria.

“Most of the biological science that comes out today is at the molecular level, but our models have not reached that point,” said Hellweger. “Systems bioecology has the potential for becoming widely used and the ‘method of choice’ for simulation in the post-genomic era.”

Provided by Northeastern University

Explore further: Godwits are flexible... when they get the chance

Related Stories

The vital question: Why is life the way it is?

Apr 01, 2015

The Vital Question: Why is life the way it is? is a new book by Nick Lane that is due out on April 23rd. His question is not one for a static answer but rather one for a series of ever sharper explanations—explanations that a ...

Marine viruses changing Earth's system: study

Sep 28, 2010

All but overlooked until the past decade, marine viruses far outnumber any other biological entity on the planet. Scientists are only beginning to discover the invisible particles that are the cogs of Earth's ...

Recommended for you

Godwits are flexible... when they get the chance

32 minutes ago

Black-tailed godwits are able to cope with unpredictable weather. This was revealed by a thorough analysis of the extraordinary spring of 2013 by ecologist Nathan Senner of the University of Groningen and ...

Rules aim to protect imperiled bird's habitat in 10 states

8 hours ago

Interior Secretary Sally Jewell revealed plans Thursday to preserve habitat in 10 Western states for an imperiled ground-dwelling bird, the federal government's biggest land-planning effort to date for conservation of a single ...

Understanding how cells follow electric fields

9 hours ago

Many living things can respond to electric fields, either moving or using them to detect prey or enemies. Weak electric fields may be important growth and development, and in wound healing: it's known that ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.