2 immune-system proteins linked to colitis-associated cancer

Feb 02, 2009

Recent research from the laboratory of Michael Karin, PhD, at the University of California, San Diego School of Medicine - the first researcher to demonstrate a molecular link between inflammation and cancer - has identified two potential targets for the prevention and treatment of colitis-associated cancer (CAC), the most serious complication of inflammatory bowel disease.

Karin, Distinguished Professor of Pharmacology and Pathology and member of the Moores UCSD Cancer Center, and his team used genetic tools to demonstrate in mice that a cytokine called Interleukin 6 (IL-6), is an important regulator of tumor production during CAC development, and that its molecular effects are largely mediated by the transcription factor STAT3 in cancer cells. Their latest study - which is also the first to establish the cancer-promoting function of STAT3 in a validated mouse model of human cancer - will be published in the February 3 on-line edition of the journal Cancer Cell.

Recurrent inflammation and chronic infections contribute to a large number of different cancers including CAC which occurs in people suffering from chronic colitis, a common inflammatory bowel disease, putting them at very high risk for cancer. Cytokines - small proteins released by immune-system cells - have been suggested to drive early tumor growth by stimulating the growth and survival of pre-malignant cells.

In previous work, Karin's team showed that activation of a pro-inflammatory protein called NF-kB stimulates the proliferation of premalignant epithelial cells in CAC, giving rise to malignant growths in the colon. Interestingly, NF-kB in colonic epithelial cells promotes the development of cancer, not through inflammation, but through inhibition of apoptosis or cell death. On the other hand, NF-kB in the immune cells promotes cancer by enhancing inflammation, mostly by controlling the expression of pro-inflammatory cytokine expression. One of these cytokines was thought to be IL-6.

"IL-6 fosters chronic inflammation and malignant cell survival and growth by regulating the survival of T cells, white blood cells that direct the body's immune system," Karin said.

The proliferative and survival effects of IL-6 are largely mediated by the transcription factor STAT3, first suggested to have a cancer-promoting function by James Darnell at Rockefeller University in New York. The new work, which provides the first genetic evidence for the critical role of STAT3 in cancer using a mouse model of human cancer, also suggests that IL-6 and Stat3 constitute useful targets for the prevention and treatment of CAC, Karin added. The researchers showed that ablation of STAT3 in intestinal epithelial cells effectively inhibited CAC induction and growth in mice.

Colorectal cancer is one of the most common fatal malignancies worldwide, and almost half of all affected individuals die from the disease. Patients with inflammatory bowel disease, such as ulcerative colitis, are at a higher risk of developing colorectal cancer.

Source: University of California - San Diego

Explore further: Second-line cetuximab active beyond progression in quadruple wild-type patients with mCRC

Related Stories

A single-cell breakthrough

Mar 18, 2015

The human gut is a remarkable thing. Every week the intestines regenerate a new lining, sloughing off the equivalent surface area of a studio apartment and refurbishing it with new cells. For decades, researchers ...

Recommended for you

Spicy treatment the answer to aggressive cancer?

Jul 03, 2015

It has been treasured by food lovers for thousands of years for its rich golden colour, peppery flavour and mustardy aroma…and now turmeric may also have a role in fighting cancer.

Cancer survivors who smoke perceive less risk from tobacco

Jul 02, 2015

Cancer survivors who smoke report fewer negative opinions about smoking, have more barriers to quitting, and are around other smokers more often than survivors who had quit before or after their diagnosis, according to a ...

Melanoma mutation rewires cell metabolism

Jul 02, 2015

A mutation found in most melanomas rewires cancer cells' metabolism, making them dependent on a ketogenesis enzyme, researchers at Winship Cancer Institute of Emory University have discovered.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.