Gene to reduce wheat yield losses

Feb 19, 2009

A new gene that provides resistance to a fungal disease responsible for millions of hectares of lost wheat yield has been discovered by scientists from the US and Israel.

"This is the first step to achieving more durable resistance to a devastating disease in wheat," said Dr Cristobal Uauy, co-author of the report, recently appointed to the John Innes Centre in Norwich.

Resistance to stripe rust has previously been achieved using genes that are specific to single races of the disease. Unfortunately, each of these genes has had limited durability in the field because the pathogen has mutated to overcome them.

In the paper to be published in Science Express tomorrow, the international team of scientists report finding a novel type of gene in wild wheat that is absent in modern pasta and bread wheat varieties.

"This gene makes wheat more resistant to all stripe rust fungus races tested so far," said Dr Uauy.

The gene confers resistance at relatively high temperatures, and a focus of Dr Cristobal Uauy's research at JIC will be to test how effective it is in UK-adapted varieties.

Bread wheat provides about 20 per cent of the calories eaten by humankind and is the UK's biggest crop export.

Dr Uauy has recently been appointed at JIC. He will lead a research collaboration with the National Institute of Agricultural Botany (NIAB) designed to deliver practical benefits to agriculture. Research results will be made available to breeders, so they can be deployed into modern varieties for farmers.

Dr Uauy will use the latest genomic techniques to find genes in wheat that directly affect yield and nutritional content.

Yield is a complex trait influenced by many environmental and genetic factors. It was thought that the genetic component determining yield was made up of many different genes each exerting a small influence, but recent work led by the John Innes Centre has challenged this view. Several stretches of the genome, known as quantitative trail loci (QTLs) have been identified that exert large effects on yield, in different environments. Dr Uauy will lead the effort to find the precise genetic basis for their effect on yield.

Source: Norwich BioScience Institutes

Explore further: Mass deaths of rare Kazakhstan antelopes stir conservation fears

Related Stories

Genetic road map may bring about better cotton crops

Apr 20, 2015

A University of Texas at Austin scientist, working with an international research team, has developed the most precise sequence map yet of U.S. cotton and will soon create an even more detailed map for navigating ...

Healthy grain fibre helps barley resist pests

Mar 19, 2015

Research at the University of Adelaide's Waite campus has shed light on the action of the serious agricultural pest, cereal cyst nematode, which will help progress improved resistant varieties.

Recommended for you

Insect mating behavior has lessons for drones

17 hours ago

Male moths locate females by navigating along the latter's pheromone (odor) plume, often flying hundreds of meters to do so. Two strategies are involved to accomplish this: males must find the outer envelope ...

Bacterial tenants in fungal quarters

May 29, 2015

Ludwig Maximilian University of Munich researchers have sequenced the genome of a bacterial symbiont hosted by a mycorrhizal fungus. Analysis of the symbiont's genetic endowment reveals previously unknown ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.