Turning down gene expression promotes nerve cell maintenance

February 2, 2009

Anyone with a sweet tooth knows that too much of a good thing can lead to negative consequences. The same can be said about the signals that help maintain nerve cells, as demonstrated in a new study of myelin, a protein key to efficient neuronal transmission.

Normal nerve cells have a myelin sheath, which, much like the insulation on a cable, allows for rapid and efficient signal conduction. However, in several diseases - the most well-known being multiple sclerosis - demyelination processes cause the breakdown of this "insulation", and lead to deficits in perception, movement, cognition, etc. Thus, in order to help patients of demyelinating disease, researchers are studying the pathways that control myelin formation and maintenance.

A new study by University of California scientists examines the role of a structural protein, called lamin, in maintaining myelin. They found that, while lamin is necessary in the initial stages of myelin formation, too much lamin promotes myelin breakdown. Further investigation led the researchers to the discovery of a signal that fine-tunes lamin expression. This signal, a microRNA called miR-23, can turn down lamin gene expression, and thereby prevent demyelination due to lamin overexpression.

This new work reported in Disease Models & Mechanisms (DMM), dmm.biologists.org, adds another piece to the puzzle that is understanding myelin formation and maintenance. Additionally, the identification of miR-23 as a myelin regulator introduces a new potential drug target in developing treatments for demyelinating illness.

The report was written Shu-Ting Lin and Ying-Hui Fu at the Department of Neurology, University of California San Francisco. The report is published in the March/April issue of Disease Models & Mechanisms (DMM), a research journal published by The Company of Biologists, a non-profit based in Cambridge, UK.

Source: The Company of Biologists

Explore further: Research on rare genetic disease reveals new stem cell pathway

Related Stories

Rac1 protein critical for lung development

October 20, 2016

A study by researchers from The Saban Research Institute of Children's Hospital Los Angeles reveals a promising therapeutic target for improving lung function in infants. Their study, now published online by the American ...

New approach for Parkinson's diagnosis with flux compensator

October 21, 2016

A new project for the early detection of Parkinson's disease with strongly magnetized xenon gas has been initiated at FMP. The team led by physicist Leif Schröder has received a three-year grant from the Michael J. Fox Foundation ...

Anxiety is linked to death from cancer in men

October 20, 2016

About one in 14 people around the world are affected by anxiety disorders at any given time. Those who suffer from these conditions experience impairment, disability, and are at a high risk for substance abuse and suicide. ...

How does friendly fire happen in the pancreas?

October 21, 2016

In type 1 diabetes, the body attacks its own insulin-producing cells. Scientists at Helmholtz Zentrum München, partner in the German Center for Diabetes Research, and their colleagues at Technical University of Munich have ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.