Turning down gene expression promotes nerve cell maintenance

February 2, 2009

Anyone with a sweet tooth knows that too much of a good thing can lead to negative consequences. The same can be said about the signals that help maintain nerve cells, as demonstrated in a new study of myelin, a protein key to efficient neuronal transmission.

Normal nerve cells have a myelin sheath, which, much like the insulation on a cable, allows for rapid and efficient signal conduction. However, in several diseases - the most well-known being multiple sclerosis - demyelination processes cause the breakdown of this "insulation", and lead to deficits in perception, movement, cognition, etc. Thus, in order to help patients of demyelinating disease, researchers are studying the pathways that control myelin formation and maintenance.

A new study by University of California scientists examines the role of a structural protein, called lamin, in maintaining myelin. They found that, while lamin is necessary in the initial stages of myelin formation, too much lamin promotes myelin breakdown. Further investigation led the researchers to the discovery of a signal that fine-tunes lamin expression. This signal, a microRNA called miR-23, can turn down lamin gene expression, and thereby prevent demyelination due to lamin overexpression.

This new work reported in Disease Models & Mechanisms (DMM), dmm.biologists.org, adds another piece to the puzzle that is understanding myelin formation and maintenance. Additionally, the identification of miR-23 as a myelin regulator introduces a new potential drug target in developing treatments for demyelinating illness.

The report was written Shu-Ting Lin and Ying-Hui Fu at the Department of Neurology, University of California San Francisco. The report is published in the March/April issue of Disease Models & Mechanisms (DMM), a research journal published by The Company of Biologists, a non-profit based in Cambridge, UK.

Source: The Company of Biologists

Explore further: Chemists turn bacterial molecules into potential drug molecules

Related Stories

What is life?

October 20, 2015

"Why would NASA want to study a lake in Canada?"

Team identifies the off switch for biofilm formation

August 24, 2015

Bacteria are best known as free-living single cells, but in reality their lives are much more complex. To survive in harsh environments, many species of bacteria will band together and form a biofilm—a collection of cells ...

Wavelets improve medical imaging

September 11, 2015

An approach to converting the data from MRI (magnetic resonance imaging) machines, mammograms and other medical equipment gives doctors a much clearer picture of your insides and a chance to detect disease and other problems ...

Recommended for you

Exiled exoplanet likely kicked out of star's neighborhood

December 1, 2015

A planet discovered last year sitting at an unusually large distance from its star - 16 times farther than Pluto is from the sun - may have been kicked out of its birthplace close to the star in a process similar to what ...

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.