Researchers generate functional neurons from somatic cells

February 24, 2009

In a new study, researchers were able to generate functionally mature motor neurons from induced pluripotent stem (iPS) cells, which are engineered from adult somatic cells and can differentiate into most other cell types. A potential new source of motor neurons that does not require human eggs or embryos could be an enormous boon to research into conditions such as amyotrophic lateral sclerosis (ALS) and spinal cord injury and could open the door to eventual treatments. The study is published in Stem Cells.

This study is the first to use human iPS cells to generate electrically active motor neurons, a key hallmark of functional maturation that is essential for any future application of iPS cells. "To our knowledge, our results present the first demonstration of the electrical activity of iPS-derived neurons and further suggest the feasibility of using these cells to explore how changes in motor neuron activity contributes to the degeneration of these cells underlying these disorders," the authors state.

Led by William Lowry, and in collaboration with Bennett Novitch, Harley Kornblum, and Martina Wiedau-Pazos of the University of California Los Angeles, researchers compared the ability of different human cell lines to generate motor neuron progenitors and fully differentiated motor neurons. "These findings support the possibility that reprogrammed somatic cells might prove to be a viable alternative to embryo-derived cells in regenerative medicine," the authors note.

When measuring the electrophysical properties of the iPS-derived neurons, the researchers found that the iPS cells followed a normal developmental progression to mature, electrically active neurons.

More information: www3.interscience.wiley.com/journal/121607285/grouphome/home.html

Source: Wiley

Explore further: Innovations from the wild world of optics and photonics

Related Stories

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Protein 'comet tails' propel cell recycling process

June 18, 2015

Several well-known neurodegenerative diseases, such as Lou Gehrig's (ALS), Parkinson's, Alzheimer's, and Huntington's disease, all result in part from a defect in autophagy - one way a cell removes and recycles misfolded ...

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.