Researchers generate functional neurons from somatic cells

February 24, 2009

In a new study, researchers were able to generate functionally mature motor neurons from induced pluripotent stem (iPS) cells, which are engineered from adult somatic cells and can differentiate into most other cell types. A potential new source of motor neurons that does not require human eggs or embryos could be an enormous boon to research into conditions such as amyotrophic lateral sclerosis (ALS) and spinal cord injury and could open the door to eventual treatments. The study is published in Stem Cells.

This study is the first to use human iPS cells to generate electrically active motor neurons, a key hallmark of functional maturation that is essential for any future application of iPS cells. "To our knowledge, our results present the first demonstration of the electrical activity of iPS-derived neurons and further suggest the feasibility of using these cells to explore how changes in motor neuron activity contributes to the degeneration of these cells underlying these disorders," the authors state.

Led by William Lowry, and in collaboration with Bennett Novitch, Harley Kornblum, and Martina Wiedau-Pazos of the University of California Los Angeles, researchers compared the ability of different human cell lines to generate motor neuron progenitors and fully differentiated motor neurons. "These findings support the possibility that reprogrammed somatic cells might prove to be a viable alternative to embryo-derived cells in regenerative medicine," the authors note.

When measuring the electrophysical properties of the iPS-derived neurons, the researchers found that the iPS cells followed a normal developmental progression to mature, electrically active neurons.

More information: www3.interscience.wiley.com/journal/121607285/grouphome/home.html

Source: Wiley

Explore further: Brain disease scenarios revised by step-by-step imaging of toxic aggregation

Related Stories

Protein 'comet tails' propel cell recycling process

June 18, 2015

Several well-known neurodegenerative diseases, such as Lou Gehrig's (ALS), Parkinson's, Alzheimer's, and Huntington's disease, all result in part from a defect in autophagy - one way a cell removes and recycles misfolded ...

Chameleon proteins make individual cells visible

May 19, 2015

Researchers discovered a new mechanism of how fluorescent proteins can change colour. It enables the microscopic visualization of individual cells in their three-dimensional environment in living organisms.

Device may allow sensations in prosthetic hands

May 13, 2015

To the nearly 2 million people in the U.S. living with the loss of a limb, including U.S. military veterans, prosthetic devices provide restored mobility yet lack sensory feedback. A team of engineers and researchers at Washington ...

Recommended for you

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.