Evidence of ancient hot springs on Mars detailed

February 12, 2009

New Rochelle, NY, February 12, 2009 -Data from the Mars Reconnaissance Orbiter (MRO) suggest the discovery of ancient springs in the Vernal Crater, sites where life forms may have evolved on Mars, according to a report in Astrobiology, a peer-reviewed journal published by Mary Ann Liebert.

Hot springs have great astrobiological significance, as the closest relatives of many of the most ancient organisms on Earth can thrive in and around hydrothermal springs. If life forms have ever been present on Mars, hot spring deposits would be ideal locations to search for physical or chemical evidence of these organisms and could be target areas for future exploratory missions.

In the research paper entitled, "A Case for Ancient Springs in Arabia Terra, Mars," Carlton C. Allen and Dorothy Z. Oehler, from the Astromaterials Research and Exploration Science Directorate at the NASA Johnson Space Center, Houston, Texas, propose that new image data from the High Resolution Imaging Science Experiment (HiRISE) on MRO depict structures in Vernal Crater that appear to have arisen as part of a major area of ancient spring activity. The data suggest that the southern part of Vernal Crater has experienced episodes of water flow from underground to the surface and may be a site where martian life could have developed.

"Hot spring deposits are key target areas for future Mars missions," says Sherry L. Cady, PhD, Editor of Astrobiology and Associate Professor in the Department of Geology at Portland State University. "Such deposits on Earth preserve evidence of the fossilized remains of the microbial communities that inhabited the hot springs over a wide range of spatial scales. The potential to find key evidence indicative of life--biofabrics, microbial remains, chemical fossils in minerals--is high when sedimentary deposits form from hydrothermal fluids. Hot spring fluids are typically laden with dissolved mineral ions that, when they precipitate out and create the hydrothermal deposit, enhance fossilization of all types of biosignatures."

Several key papers in the issue are available free online at www.liebertpub.com/ast

Source: Mary Ann Liebert, Inc./Genetic Engineering News

Related Stories

Recommended for you

Distant planet's interior chemistry may differ from our own

September 1, 2015

As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their chemistry could differ from that found on Earth. ...

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Interstellar seeds could create oases of life

August 27, 2015

We only have one example of a planet with life: Earth. But within the next generation, it should become possible to detect signs of life on planets orbiting distant stars. If we find alien life, new questions will arise. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.