Energy simulation may explain turbulence mystery

Feb 26, 2009

(PhysOrg.com) -- A new 3D model linking magnetic fields to the transfer of energy in space might help solve a physics mystery first observed in the solar wind 15 years ago.

Scientists at The University of Alabama in Huntsville and Ruhr University in Bochum, Germany, developed the simulation while studying turbulence and energy transfer in the plasma carried away from the sun in the solar wind.

"We were attempting to understand the spacecraft observations that have seen this kind of turbulence," said Dr. Dastgeer Shaikh, an assistant professor in the Physics Department at UAHuntsville. "This was seen first by the Wind spacecraft launched in 1994, but has also been seen by other satellite instruments since then."

What Wind and the other spacecraft saw was particles in relatively small-scale solar wind eddies getting "hotter" than theories predicted they should get.

A theory published in 1941 by mathematician Andrey Kolmogorov established a generally accepted relationship between the size of eddies and the amount of energy released or dissipated: The smaller an eddy gets the more it interacts with its surroundings, so the greater the energy loss. This "lost" energy heats plasma in the solar wind.

The Kolmogorov law set the ratio between size and energy at 5/3: In a dynamic fluid, the amount of energy released should increase by a factor of five when the size of the eddy shrinks by two-thirds.

Except, apparently, in the solar wind and other regions influenced by magnetic fields. The Wind spacecraft and others found that in the solar wind's smaller eddies the link between size and energy jumps to 7/3, a 40 percent increase in the efficiency of energy transfer between larger and smaller plasma eddies in the turbulent solar wind.

The computer model developed by Shaikh and Dr. P.K. Shukla in Germany tries to explains the sudden increase by looking at the interaction between turbulent magnetic fields and the outward flowing currents of plasma ions and electrons.

"The magnetic field is responsible for energy cascades," said Shaikh. Constrained by magnetic fields, the small eddies serve to "damp" the wave energy in them.

"This is the same kind of thing that happens in a microwave oven," Shaikh said. "Microwaves are damped inside the food and release the energy that makes the food hot."

If small eddies in the solar wind are more efficient than expected at transferring energy, that might help explain the hot particles discovered by instruments aboard Wind and other spacecraft.

Results of this research were published earlier this month in the on-line edition of "Physical Review Letters."

Provided by University of Alabama in Huntsville

Explore further: Used MRI magnets get a second chance at life in high-energy physics experiments

Related Stories

Shifting winds: An early warning for reduced energy

May 12, 2015

The Rocky Mountains certainly aren't known for their mild winters. But in contrast to the upper Midwest, which seems to exist in a perpetually frozen state from November through March, the plains just east ...

Finding ways to use excess carbon dioxide

May 08, 2015

When Chemical and Biomedical Engineering student Monica Padilla graduates this week with her Master's degree, she will have the satisfaction of knowing her research helped develop the science to answer the ...

Recommended for you

SLAC gears up for dark matter hunt with LUX-ZEPLIN

May 21, 2015

Researchers have come a step closer to building one of the world's best dark matter detectors: The U.S. Department of Energy (DOE) recently signed off on the conceptual design of the proposed LUX-ZEPLIN (LZ) ...

First images of LHC collisions at 13 TeV

May 21, 2015

Last night, protons collided in the Large Hadron Collider (LHC) at the record-breaking energy of 13 TeV for the first time. These test collisions were to set up systems that protect the machine and detectors ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.