Effects of brain exercise depend on opponent

February 4, 2009

Playing games against a computer activates different brain areas from those activated when playing against a human opponent. Research published in the open access journal BMC Neuroscience has shown that the belief that one is playing against a virtual opponent has significant effects on activation patterns in the brain.

Dr. Krach and Prof. Dr. Kircher from the University of Marburg, Germany, led the research team. They performed brain-imaging studies on people playing a gambling game against opponents the subjects believed were either human or computer-controlled. According to Krach, "In our study we examined the impact of gender (women vs. men) and game partner (human vs. computer) on neural activity in the medial prefrontal cortex (mPFC)". The mPFC is an area of the brain that has been associated with the ability to create a 'Theory of Mind' - an accurate model of the thoughts, emotions and intentions of others.

In the game the subjects played, they had to decide whether to collaborate with their opponents to receive a share of the prize or betray them to win the full amount. If both players chose to betray, they would win nothing. Unknown to the players, however, they were always playing against a computer programmed to make random decisions in each round - even when they believed they were playing against another person. As Dr. Krach explains "By tricking the players into 'playing against' a series of random decisions, we averted a situation where two players might settle on an optimal strategy".

The authors found that some brain regions were activated regardless of whether the players believed their opponent to be real or virtual. These regions are all associated with the 'Theory of Mind': the mPFC, the anterior (para)-cingulate cortex (ACC) and the right temporo-parietal junction. However, in two of these regions associated with planning and anticipation, the mPFC and ACC, activity was significantly more pronounced when players thought they were competing with another human.

The results also indicated that, relative to women, men had a larger engagement of some parts of the brain, including the medial frontal regions, when they believed they were playing a human. In discussing possible explanations for the observed increased brain activity in male players, Dr. Krach speculates that, "Women may not have been as engaged playing an alleged soulless computer. Furthermore, male and female subjects always believed they were playing a male contender in the 'human partner' tests. It has been documented previously that men and women play games differently in the presence of a male partner". However, in this respect more research is required to give any definitive answer to this question.

Are women better mindreaders? Sex differences in neural correlates of mentalizing detected with functional MRI, Soeren Krach, Isabelle Bluemel, Dominic Marjoram, Tineke Lataster, Lydia Krabbendam, Jochen Weber, Jim van Os and Tilo Kircher, BMC Neuroscience (in press), www.biomedcentral.com/bmcneurosci/

Source: BioMed Central

Explore further: Can video games combat mental illness stigma?

Related Stories

Facebook wants to tap robot brains to do your bidding

November 3, 2015

Facebook is studying the ancient Chinese game of Go for insights as it works on building an artificial brain—one that it hopes to turn into a virtual personal assistant that can also sort through a mountain of photos, videos ...

Smart helmets save lives, improve rides

November 6, 2015

As technological advancements enable people to run faster, ride farther and hit harder, experts are using sensors to collect data that could reduce head trauma incidents for football, hockey, cycling and other sports.

Learning language by playing games

September 24, 2015

MIT researchers have designed a computer system that learns how to play a text-based computer game with no prior assumptions about how language works. Although the system can't complete the game as a whole, its ability to ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.