Light instead of current: Activation of neurons with light by means of semiconductor photoelectrodes

February 20, 2009

( -- Understanding the mechanisms by which the brain functions is one of the most complex challenges in science. One important aspect is the electrical conduction of stimuli in nerve cells. In order to study neuronal circuits, a sharp metal electrode is usually inserted into the brain to introduce a current. However, the response does not reflect the highly complex activation patterns of natural nerve stimuli.

In addition, the direct current applied in this fashion causes damage to tissue through undesired electrochemical side reactions. Collaboration between neuroscientists and nanomaterials researchers at Case Western Reserve University (Cleveland, Ohio, USA) has resulted in the development of a technique that is both gentler and elicits more natural nerve impulses.

As reported in the journal Angewandte Chemie, the technique is based on a micropipette coated with semiconductor nanoparticles that activates neurons in brain tissue with visible or infrared (IR) light. In contrast to conventional electrodes, these photoelectrodes require neither wires nor electrical power.

The team led by Ben W. Strowbridge and Clemens Burda coated the interiors of extremely finely drawn-out glass micropipettes with lead selenide nanoparticles. Lead selenide is a semiconductor that is activated by IR light. As in solar cells, irradiation “catapults” firmly bound electrons out of the valence band and into the conduction band of the semiconductor, where they can move freely. This leads to charge separation and thus to an electrical potential. With a suitable laser, defined processes elicited by short light pulses set off corresponding electrical pulses in the micropipette. An electrical field is thus formed around the pipette, which can then be used by the researchers to stimulate neurons in rat brain samples with a high degree of time-resolution. Measuring electrodes could then be used to record the natural activation patterns of very similar nerve impulses.

Samples of the olfactory bulb (a region of the brain involved in processing smell) and the hippocampus (part of the cerebrum important in the transfer of contents from short-term to the long-term memory) were examined. Neither toxic effects nor damage to the nerve cells were observed after repeated stimulation.

By using these new photoelectrodes, the cooperation of nerve cells can be studied. However, therapeutic applications are also possible: the probes could be used to activate individual regions of the brain or damaged or cut nerves to restore function - without the need for disturbing wires.

More information: Clemens Burda, Wireless Activation of Neurons in Brain Slices Using Nanostructured Semiconductor Photoelectrodes, Angewandte Chemie International Edition 2009, 48, No. 13, doi: 10.1002/anie.200806093

Provided by Wiley

Explore further: How cells in the developing ear 'practice' hearing

Related Stories

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

'Rat vision' may give humans best sight of all

November 19, 2015

Humans have the best of all possible visual worlds because our full stereo vision combines with primitive visual pathways to quickly spot danger, a study led by the University of Sydney has discovered.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.