Batteries get a (nano)boost

February 9, 2009

Need to store electricity more efficiently? Put it behind bars. That's essentially the finding of a team of Rice University researchers who have created hybrid carbon nanotube metal oxide arrays as electrode material that may improve the performance of lithium-ion batteries.

With battery technology high on the list of priorities in a world demanding electric cars and gadgets that last longer between charges, such innovations are key to the future. Electrochemical capacitors and fuel cells would also benefit, the researchers said.

The team from Pulickel Ajayan's research group published a paper this week describing the proof-of-concept research in which nanotubes are grown to look - and act - like the coaxial conducting lines used in cables. The coax tubes consist of a manganese oxide shell and a highly conductive nanotube core.

"It's a nice bit of nanoscale engineering," said Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science.

"We've put in two materials - the nanotube, which is highly electrically conducting and can also absorb lithium, and the manganese oxide, which has very high capacity but poor electrical conductivity," said Arava Leela Mohana Reddy, a Rice postdoc researcher. "But when you combine them, you get something interesting."

That would be the ability to hold a lot of juice and transmit it efficiently. The researchers expect the number of charge/discharge cycles such batteries can handle will be greatly enhanced, even with a larger capacity.

"Although the combination of these materials has been studied as a composite electrode by several research groups, it's the coaxial cable design of these materials that offers improved performance as electrodes for lithium batteries," said Ajayan.

"At this point, we're trying to engineer and modify the structures to get the best performance," said Manikoth Shaijumon, also a Rice postdoc. The microscopic nanotubes, only a few nanometers across, can be bundled into any number of configurations. Future batteries may be thin and flexible. "And the whole idea can be transferred to a large scale as well. It is very manufacturable," Shaijumon said.

The hybrid nanocables grown in a Rice-developed process could also eliminate the need for binders, materials used in current batteries that hold the elements together but hinder their conductivity.

The paper was written by Reddy, Shaijumon, doctoral student Sanketh Gowda and Ajayan. It appears in the online version of the American Chemical Society's Nano Letters.

Source: Rice University

Explore further: Having stomach troubles? Try swallowing an origami robot

Related Stories

Researchers boost silicon-based batteries

November 1, 2012

(Phys.org)—Researchers at Rice University have refined silicon-based lithium-ion technology by literally crushing their previous work to make a high-capacity, long-lived and low-cost anode material with serious commercial ...

Unzipped nanotubes unlock potential for batteries

June 13, 2013

(Phys.org) —Researchers at Rice University have come up with a new way to boost the efficiency of the ubiquitous lithium ion (LI) battery by employing ribbons of graphene that start as carbon nanotubes.

Recommended for you

Enhancing molecular imaging with light

July 25, 2016

In 2014, an international trio won the Nobel Prize in Chemistry for developing super-resolution fluorescence microscopy, a technique that made it possible to study molecular processes in living cells.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Nemo
not rated yet Feb 09, 2009
To add context it would be great to hear comparison with the typical batteries of today, energy density for example. My AA rechargable batteries are rated 2200 mAh. Are we talking 10x this?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.