Bacteria are models of efficiency

February 4, 2009

The bacterium Escherichia coli, one of the best-studied single-celled organisms around, is a master of industrial efficiency. This bacterium can be thought of as a factory with just one product: itself. It exists to make copies of itself, and its business plan is to make them at the lowest possible cost, with the greatest possible efficiency. Efficiency, in the case of a bacterium, can be defined by the energy and resources it uses to maintain its plant and produce new cells, versus the time it expends on the task.

Dr. Tsvi Tlusty and research student Arbel Tadmor of the Physics of Complex Systems Department developed a mathematical model for evaluating the efficiency of these microscopic production plants. Their model, which recently appeared in the online journal PLoS Computational Biology, uses only five remarkably simple equations to check the efficiency of these complex factory systems.

The equations look at two components of the protein production process: ribosomes - the machinery in which proteins are produced - and RNA polymerase - an enzyme that copies the genetic code for protein production onto strands of messenger RNA for further translation into proteins. RNA polymerase is thus a sort of work 'supervisor' that keeps protein production running smoothly, checks the specs and sets the pace. The first equation assesses the production rate of the ribosomes themselves; the second the protein output of the ribosomes; the third the production of RNA polymerase. The last two equations deal with how the cell assigns the available ribosomes and polymerases to the various tasks of creating other proteins, more ribosomes or more polymerases.

The theoretical model was tested in real bacteria. Do bacteria 'weigh' the costs of constructing and maintaining their protein production machinery against the gains to be had from being able to produce more proteins in less time? What happens when a critical piece of equipment is in short supply, say a main ribosome protein? Tlusty and Tadmor found that their model was able to accurately predict how an E. coli would change its production strategy to maximize efficiency following disruptions in the work flow caused by experimental changes to genes with important cellular functions.

What's the optimum? The model predicts that a bacterium, for instance, should have seven genes for ribosome production. It turns out that that's exactly the number an average E. coli cell has. Bacteria having five or nine get a much lower efficiency rating. Evolution, in other words, is a master efficiency expert for living factories, meeting any challenges that arise as production conditions change.

Reference: For the scientific paper, please see:

Source: Weizmann Institute of Science

Explore further: Mitochondria on guard of human life

Related Stories

Mitochondria on guard of human life

November 18, 2015

A group of researchers from Lomonosov Moscow State University in collaboration with Russian Science Foundation has developed a unique method for the selective study of electron transport chain in living mitochondria by using ...

A new symmetry underlies the search for new materials

November 17, 2015

A new symmetry operation developed by Penn State researchers has the potential to speed up the search for new advanced materials that range from tougher steels to new types of electronic, magnetic, and thermal materials. ...

Boosting the efficiency of solar panels

October 27, 2015

A UConn researcher has developed a light-harvesting antenna that could double the efficiency of existing solar cell panels and make them cheaper to build.

Plants keep one foot on the brakes

November 2, 2015

Pressing on the gas and the brakes at the same time hardly sounds like good driving technique, but Weizmann Institute scientists have discovered that plants drive some of their key processes in precisely such manner.

Cell stress response and fat and obesity gene linked

October 29, 2015

In one fell swoop, Cornell researchers have discovered mechanisms that control the function of a fat and obesity gene while at the same time answering a long-standing question about how cells respond to stress.

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.