Anti-aging pathway enhances cell stress response

February 19, 2009

People everywhere are feeling the stress of a worldwide recession. Our cells, too, are under continual assault from stress.

Hidden from sight, our cells battle challenges such as their environment, bacteria, viruses, too much or too little oxygen, and physiological stressors. Molecular systems protect cells under assault, but those systems can break down, especially with age.

To better understand how cells are protected from stress and damage, a team led by Northwestern University researchers studied the effect of resveratrol, a beneficial chemical found in red wine, on human cells in tissue culture.

The findings may help explain what happens in neurodegenerative diseases, which are age-related, when cell protection fails, proteins misfold, lots of damage accumulates and the system falls apart.

The researchers discovered a new molecular relationship critical to keeping cells healthy across a long span of time: a protein called SIRT1, important for caloric restriction and lifespan and activated by resveratrol, regulates heat shock factor 1 (HSF1), keeping it active. HSF1 in turn senses the presence of damaged proteins in the cell and elevates the expression of molecular chaperones to keep a cell's proteins in a folded, functional state. Regulation of this pathway has a direct beneficial effect to cells, the research shows.

This role of SIRT1 -- a protein already of great interest to pharmaceutical companies -- was not previously known. The results will be published in the Feb. 20 issue of the journal Science.

"When SIRT1 levels are high, you are in a high-protection mode," said Richard I. Morimoto, Bill and Gayle Cook Professor of Biochemistry, Molecular Biology and Cell Biology in Northwestern's Weinberg College of Arts and Sciences. He led the research team.

"Ironically, triggering the stress response and perhaps maintaining the cell in a protective state over a long period of time can keep cells healthy," said Morimoto. "The cell is protected against an accumulation of damage when HSF1 is more active."

SIRT1 levels decrease as humans age, Morimoto explains. Cells can't respond to stress as well. This decrease in SIRT1 may help explain why protein misfolding diseases, such as Alzheimer's, Parkinson's, Huntington's and adult-onset diabetes, are diseases of aging.

"We now have a powerful way to think about addressing neurodegenerative diseases," said Morimoto. "We have identified a pathway that can be manipulated to alter lifespan. Discovering this new basis for therapeutics is very exciting."

Source: Northwestern University

Explore further: The truth about sharks

Related Stories

The truth about sharks

July 28, 2015

Danger: shark attack (or more properly, say scientists, shark bite). With sharks swimming ever closer to shore this summer—or seeming to—and crossing paths with surfers and bathers, what's going on?

Researchers provide new details about sea stars' immunity

July 28, 2015

A study led by a University of Texas at Arlington graduate student examining sea stars dying along the West Coast provides new clues about the starfish's immune response and its ability to protect a diverse coastal ecosystem.

Extra support for cells under stress may be a job for DoGs

July 17, 2015

Stress wreaks havoc on our health—even at the cellular level. Cells under certain kinds of duress can lose water and put pressure on our DNA, making it difficult for genes to carry out critical functions such as self-repair. ...

Stem cells have more reserves for DNA replication

July 17, 2015

In cell division, nothing is as important as the precise replication of billions of genetic letters that make up DNA. Since this genomic integrity is so fundamental to survival, scientists had assumed that replication mechanisms ...

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.