Research advances nanowire technology for large-scale applications

Feb 26, 2009

(PhysOrg.com) -- Researchers at Northeastern created a network of nanowires that can be scaled up more efficiently and cost-effectively to create displays such as the NASDAQ sign in New York City’s Times Square.

Using Gallium nitride (GaN), a highly effective semiconductor material, the team created, for the first time, a horizontally aligned network of GaN nanowires, which are integral components in the development of electrical circuits in the nanoscale. GaN is currently used to create light-emitting diodes (LED) and blue and ultra-violet emitting lasers.

“Making devices that emit blue light and ultra-violet light is currently very expensive,” said Latika Menon, assistant professor of physics and co-author of the study. “The horizontal structure of the GaN nanowire network will result in a more cost-effective way to advance this technology.”

Electrodes allow for the flow of electricity between GaN nanowires and electrical wires, and the horizontal structure of the GaN nanowire networks are more easily attached to electrodes than vertical networks. In addition, the GaN nanowires have a cubic structure, with optical and transport properties that are more advanced than other nanowire structures, resulting in a more effective electrical circuit.

In terms of manufacturing, these horizontal network patterns can also be scaled up to large wafer sizes that are more compatible with the technology used to integrate them into new nanoelectronic devices. These devices connect nanotechnology and electronic devices to develop smaller and less costly manufacturing processes and products.

The research, published in a recent issue of the “Journal of Materials Chemistry,” was funded by the National Science Foundation (NSF) and the NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing at Northeastern. Other Northeastern researchers participating in this project include physicist Zhen Wu, as well as Myung Gwan Hahm and Yung Joon Jung from the department of mechanical and electrical engineering.

Provided by Northeastern University

Explore further: Graphene and diamonds prove a slippery combination

Related Stories

Communication devices enable children with disabilities

Apr 08, 2015

An interdisciplinary group of Northeastern University students and faculty have combined their knowledge of engineering and physical therapy to design, develop, and then deliver two low-cost communication ...

Self-charging battery gets boost from nanocomposite film

Feb 24, 2014

(Phys.org) —In 2012, a research team at the Georgia Institute of Technology led by Professor Zhong Lin Wang fabricated the first self-charging power pack, or battery, that can be charged without being plugged into a ...

Got Battery? Lots of low battery hacks but no quick fix

Jan 22, 2015

At a cozy watering hole in Brooklyn's Bedford-Stuyvesant neighborhood, bartender Kathy Conway counted four different phone chargers behind the bar. Call it the scourge of the red zone, call it battery anxiety. ...

'Small' transformation yields big changes

Sep 15, 2014

An interdisciplinary team of researchers led by Northeastern University has developed a novel method for controllably constructing precise inter-nanotube junctions and a variety of nanocarbon structures in ...

3Qs: Password and cloud security

Sep 08, 2014

The recent news that hackers accessed celebrities' cloud accounts and released their intimate photos online has prompted many to question the security of sensitive data stored on people's own smartphones and in the cloud. ...

Recommended for you

Graphene and diamonds prove a slippery combination

22 hours ago

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates ...

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.