Actinide research published in Reviews of Modern Physics

February 11, 2009

(PhysOrg.com) -- A Livermore researcher who teamed with a United Kingdom collaborator has published an article in Reviews of Modern Physics that refines decades of actinide science and may just become the preeminent research paper in the field.

Kevin Moore of LLNL and Gerrit van der Laan at the Diamond Light Source in the United Kingdom wrote “Nature of the 5f States in Actinide Metals,” which describes the electronic, magnetic and crystal structure of actinides and demonstrates the importance of actinide science to a broad class of scientists. It appears in the Feb. 6 edition of Reviews of Modern Physics.

Actinides encompass the 15 chemical elements that lie between actinium and lawrencium included on the periodic table, with atomic numbers 89-103. The actinide series derives its name from the first element in the series, actinium. The 5f states are complicated electron wave functions.

Reviews of Modern Physics is the premier journal for physics research. It is the fifth highest ranked journal out of all fields and only publishes 32 invited papers a year. Each year, one or more of the invited papers are used in part as acceptance speeches for the Nobel Prize in physics.

Moore and van der Laan’s paper points out that the heaviest actinides have almost no experimental data, generating only a rudimentary level of understanding.

“The actinide series as a whole is modestly understood, with the level of comprehension decreasing with atomic number,” Moore said.

While theoretical work on the actinides is substantial, the lack of experiments is due to the toxic and radioactive nature of the materials, which makes handling difficult and expensive. In addition, the cost of the materials themselves is exceedingly high, meaning experiments that need a large amount of materials further increase the expense of research.

Progress in understanding the theoretical calculations has its limits as well. It’s been hampered by the extreme difficulty of the physics and the lack of a healthy body of experimental data from which to validate the theory.

However, Moore and van der Laan explain the progress in understanding the electronic structure of the 5f states in the actinide metal series by sifting through decades of research in the theoretical and experimental fields and condensing the data in a definitive article on actinide science.

“This establishes LLNL as a frontrunner in actinide science and highlights the work done at defense labs by having that research in a world-class journal,” Moore said.

Provided by Lawrence Livermore National Laboratory

Explore further: Researchers find roots of modern humane treatment

Related Stories

Researchers find roots of modern humane treatment

August 25, 2016

Researchers at Barrow Neurological Institute have traced the roots of humane medical practices to a pioneering French physician who treated people with deformities as humans instead of "monsters," as they were commonly called.

The trials and tribulations of being left-handed

August 22, 2016

As 13 August is recognised worldwide as International Left-Handers Day, there has been an increased focus over the past week on the biological and genetic causes of left-handedness in humans, as well as the health, social ...

Recommended for you

Electrons at the speed limit

August 26, 2016

Electronic components have become faster and faster over the years, thus making powerful computers and other technologies possible. Researchers at ETH Zurich have now investigated how fast electrons can ultimately be controlled ...

A new study looks for the cortical conscious network

August 26, 2016

New research published in the New Journal of Physics tries to decompose the structural layers of the cortical network to different hierarchies enabling to identify the network's nucleus, from which our consciousness could ...

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.