Actinide research published in Reviews of Modern Physics

February 11, 2009

( -- A Livermore researcher who teamed with a United Kingdom collaborator has published an article in Reviews of Modern Physics that refines decades of actinide science and may just become the preeminent research paper in the field.

Kevin Moore of LLNL and Gerrit van der Laan at the Diamond Light Source in the United Kingdom wrote “Nature of the 5f States in Actinide Metals,” which describes the electronic, magnetic and crystal structure of actinides and demonstrates the importance of actinide science to a broad class of scientists. It appears in the Feb. 6 edition of Reviews of Modern Physics.

Actinides encompass the 15 chemical elements that lie between actinium and lawrencium included on the periodic table, with atomic numbers 89-103. The actinide series derives its name from the first element in the series, actinium. The 5f states are complicated electron wave functions.

Reviews of Modern Physics is the premier journal for physics research. It is the fifth highest ranked journal out of all fields and only publishes 32 invited papers a year. Each year, one or more of the invited papers are used in part as acceptance speeches for the Nobel Prize in physics.

Moore and van der Laan’s paper points out that the heaviest actinides have almost no experimental data, generating only a rudimentary level of understanding.

“The actinide series as a whole is modestly understood, with the level of comprehension decreasing with atomic number,” Moore said.

While theoretical work on the actinides is substantial, the lack of experiments is due to the toxic and radioactive nature of the materials, which makes handling difficult and expensive. In addition, the cost of the materials themselves is exceedingly high, meaning experiments that need a large amount of materials further increase the expense of research.

Progress in understanding the theoretical calculations has its limits as well. It’s been hampered by the extreme difficulty of the physics and the lack of a healthy body of experimental data from which to validate the theory.

However, Moore and van der Laan explain the progress in understanding the electronic structure of the 5f states in the actinide metal series by sifting through decades of research in the theoretical and experimental fields and condensing the data in a definitive article on actinide science.

“This establishes LLNL as a frontrunner in actinide science and highlights the work done at defense labs by having that research in a world-class journal,” Moore said.

Provided by Lawrence Livermore National Laboratory

Explore further: Reviews of Modern Physics highlights recent research on Spin Hall effects

Related Stories

Gene drive reversibility introduces new layer of biosafety

November 16, 2015

In parallel with their development of the first synthetic gene drives - which greatly increase the chance a specific gene will be passed on to all offspring - George Church, Ph.D., and Kevin Esvelt, Ph.D., helped pioneer ...

Explainer: What is mass?

November 12, 2015

When it comes to electrons, Higgs bosons or photons, they don't have much going for them. They possess spin, charge, mass and … that's about it.

Sound waves could power hard disk drives of the future

November 11, 2015

Our need to store data is growing at an astonishing rate. An estimated 2.7 zettabytes (2.721) of data are currently held worldwide, equivalent to several trillion bytes for every one of the 7 billion people on Earth. Accessing ...

Transformation needed in thermal management research

November 13, 2015

Researchers are recommending changes in how to study rapidly changing temperatures in complex systems such as aircraft and power plants, a transformation that could bring advances for applications ranging from fighter jets ...

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.