New, Unusual Semiconductor is a Switch-Hitter

Jan 30, 2009 By Laura Mgrdichian feature

(PhysOrg.com) -- A research group in Germany has discovered a semiconducting material that can switch its semiconducting properties -- turning from one type of semiconductor to another -- via a simple change in temperature. This intriguing behavior may make the material useful in efforts to create better performing integrated circuits, which form the backbone of almost all electronic devices.

Semiconductors are essential to integrated circuits, and any significant advances in semiconductor materials could mean big changes for the future of electronic technologies. For example, this new finding may further developments in data-storage technology. At a more fundamental level, the material could change how semiconductor chips are designed.

"This new material may be able to help simplify chip production in the future," the study's corresponding researcher, chemist Tom Nilges of the University of Muenster, in Germany, said to PhysOrg.com. "Instead of using two materials to build transistors for integrated circuits, there is now a reasonable chance that this job could be performed by a single material."

The material is a compound containing silver, tellurium, and bromine, abbreviated Ag10Te4Br3. At three distinct temperatures—290 degrees Kelvin (K), 317 K, and 390 K (62, 111, and 242 degrees Fahrenheit, respectively)—the material changes from a p-type semiconductor (excess positively charged "holes," or electron absences) to an n-type (excess negative carriers), and back to a p-type. These changes are reversible.

Silver-based semiconducting compounds tend to have many interesting electrical properties, mainly because they can conduct both electrons and silver ions exceptionally well. This makes them useful in a variety of electronics applications. For example, they are being eyed as good candidates for a certain type of memory device.

Another possible application for these materials is in the relatively cheap production of electricity without the simultaneous emission of planet-warming greenhouse gases. Ag10Te4Br3 may be particularly suited to this, as it has interesting thermal properties. For example, over the temperature range 355 K - 410 K, the material displays a strong and broad endothermic response, meaning it absorbs a large amount of heat from its surroundings.

In addition, it does not rapidly adjust its temperature in relation to its surroundings -- it has a very low "thermal diffusivity" -- and displays a huge thermopower drop, meaning the voltage across the material changes rapidly in response to changing temperature. Such a large thermopower change has not before been observed.

The ability of Ag10Te4Br3 to switch from p-type to n-type and back again is the result of several complex structural changes it undergoes in response to the changing temperature. In combination, these changes allow the material's electrical properties to morph so dramatically. Some of the tellurium ions form mobile chains; the silver ions coordinate to those chains. There is also a shift in the concentration of charge carriers—electrons and holes—which is connected with the chain-forming tendency of tellurium.

Future research into Ag10Te4Br3 may focus on its potential to allow fine-tuning of its physical properties, beyond the changes caused by temperature alone.

Citation: Nilges et al. Nature Materials 8, 101-108 (2009); advance online publication, (doi:10.1038/nmat2358)

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Fundamental observation of spin-controlled electrical conduction in metals

Related Stories

Diode a few atoms thick shows surprising quantum effect

Jun 23, 2015

A quantum mechanical transport phenomenon demonstrated for the first time in synthetic, atomically-thin layered material at room temperature could lead to novel nanoelectronic circuits and devices, according ...

Modeling how thin films break up

Jun 19, 2015

Excess surface energy from unsatisfied bonds is a significant driver of dimensional changes in thin-film materials, whether formation of holes, contracting edges, or run-away corners. In general, this break-up ...

The race for better batteries

Jun 15, 2015

"The worldwide transition from fossil fuels to renewable sources of energy is under way…" according to the Earth Policy Institute's new book, The Great Transition.

Recommended for you

Evidence for stable room-temperature skyrmions

4 hours ago

In research published in Nature Communications, researchers from the RIKEN Center for Emergent Matter Science in Japan, along with collaborators in Europe and Japan, have identified a class of materials that d ...

To conduct, or to insulate? That is the question

Jul 02, 2015

A new study has discovered mysterious behaviour of a material that acts like an insulator in certain measurements, but simultaneously acts like a conductor in others. In an insulator, electrons are largely stuck in one place, ...

User comments : 7

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
4 / 5 (1) Jan 30, 2009
Looks to be a new chalcogenide or multiferroic formulation.
El_Nexus
3 / 5 (2) Jan 30, 2009
It's a pity two of those critical temperatures are close to room temperature (17 and 44 degrees celsius), which would make any electronics made with this stuff highly sensitive to weather conditions.
h0dges
3 / 5 (2) Jan 31, 2009
It's a pity two of those critical temperatures are close to room temperature (17 and 44 degrees celsius), which would make any electronics made with this stuff highly sensitive to weather conditions.

I'm sure they'll be able to tweak the temps with shifter dopants.

@holoman: how is Ag10Te4Br3 either chalcogenic or multi-ferroic? It doesn't contain any chalcogens or iron.
nanomvp
5 / 5 (1) Jan 31, 2009
"Silver-based semiconducting compounds tend to have many interesting electrical properties, mainly because they can conduct both electrons and silver ions exceptionally well."

Silver diffusion seems difficult to integrate into conventional semiconductor devices.
gongii
5 / 5 (1) Feb 01, 2009
This is a silver-doped chalcogenide (chalcogen is Te). Chalcogenides have unstable microstructure, so will distort easily below 500 C.

The doping change is nice, but can you really make a p-n junction from this material? It probably contains too many structural defects that cause excess leakage.
semicon
not rated yet Feb 02, 2009
Hello all together,
the material changes pnp only at 390 K and
the transition can be changed to room temperature by chemical tuning. Also this feature is reversible.

Alizee
Feb 03, 2009
This comment has been removed by a moderator.
semicon
not rated yet Feb 04, 2009
It is a mixed conductor. The electronic cond. exeeds the ionic one by one order of magnitude.
The high silver mobility makes the phase transitions reversible. All structures were determined from one single crystal. That means no volume jump.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.