New technique put to use to test clean up of contaminated groundwater

January 30, 2009

Cleaning up the dangerous contaminants — dry-cleaning fluids, solvents and petroleum hydrocarbons — found in underground water presents one of the most urgent challenges facing environmental science. A report issued today by the U.S. Environmental Protection Agency (EPA) sheds light on a new way to monitor and improve the success of clean-up efforts using a technique developed at the University of Toronto.

"The most common method to clean-up groundwater is biodegradation — using microbes to consume the contaminants and break them down into more benign end products that are not harmful to the environment," says U of T geochemist Barbara Sherwood Lollar, the scientist who initiated the concept and goals for the EPA report and is one of its five international authors.

The report outlines how this can be done using a novel technique called Compound Specific Isotope Analysis, developed in U of T's Stable Isotope Laboratory. The elements of carbon that form the basis for the hydrocarbon contaminants actually come in two types called isotopes, explains Sherwood Lollar. "When microbes degrade contaminants, they prefer the lighter isotope carbon 12 over the heavier isotope carbon 13. The resulting change in the ratio of these isotopes in the contaminant itself is a dramatic and definitive indicator that the biodegradation is successfully taking place."

Beginning in the 1990s, U of T's Stable Isotope Laboratory has been an international pioneer in discovering how different carbon isotopes can be used to identify whether or not biodegradation is taking place. "Today, dozens of students in Canada have been trained in this method, drawn in by the fascinating combination of fundamental research that has important applications such as the clean-up of drinking water," says Sherwood Lollar. Over the past decade, as the new technique has become more widespread, centres for research and education —- and even private companies — have blossomed worldwide.

"Much of the research on new methods of analyzing groundwater contamination has been published in scientific and professional journals but this report — written specifically for the practitioners in accessible language with clear procedural information and decision-making strategies — is a milestone," says Sherwood Lollar.

"It is particularly gratifying to be able to take a technique out of the lab and to put it into the hands of the people working on this issue every day around the world," she says.

Source: University of Toronto

Explore further: 'Weighing' atoms with electrons

Related Stories

'Weighing' atoms with electrons

October 11, 2016

The different elements found in nature each have their distinct isotopes. For carbon, there are 99 atoms of the lighter stable carbon isotope 12C for each 13C atom, which has one more neutron in its nucleus. Apart from this ...

Understanding the ebb and flow of Peru's glacial past

October 17, 2016

Many thousands of years ago, as the world slowly began to thaw at the end of the last ice age, the landscapes of southern Peru were quite different than the ones University of Maine's Gordon Bromley finds himself wandering ...

MIDA boronates react via two different mechanisms

August 9, 2016

(—In natural product and pharmaceutical chemistry, one goal is to find a modular reaction to put together complex products, similar to how amino acids combine to form a peptide. Ideally, this modular reaction could ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.