New stretchable electrodes created to study stresses on cardiac cells

Jan 22, 2009 by Emil Venere
Babak Ziaie, a Purdue associate professor of electrical and computer engineering, demonstrates a new "stretchable" electrode created in research with Stanford University to study how cardiac muscle cells, neurons and other cells react to mechanical stresses from heart attacks, traumatic brain injuries and other diseases. The devices are made by injecting a liquid alloy made of indium and gallium into thin microchannels between two sheets of a plastic polymer. Purdue News Service photo/Andrew Hancock

Engineers at Purdue and Stanford universities have created stretchable electrodes to study how cardiac muscle cells, neurons and other cells react to mechanical stresses from heart attacks, traumatic brain injuries and other diseases.

The devices are made by injecting a liquid alloy made of indium and gallium into thin microchannels between two sheets of a plastic polymer, said Babak Ziaie, a Purdue associate professor of electrical and computer engineering.

Cell cultures are grown on top of the new "stretchable cell culture platform."

"We designed a simple and cost-effective process for fabricating these stretchable platforms," said Ziaie, who is working with Beth L. Pruitt, an assistant professor of mechanical engineering at Stanford, along with graduate students and other researchers at both universities. "What's special about this technology is that it allows you to electrically stimulate or monitor the cell population using electrodes while you are applying stress to the cells."

Stretching the cell cultures causes mechanical stresses like those exerted on tissues during heart attacks and traumatic brain injuries. The researchers have grown mice cardiac muscle cells on the platform and may grow cell cultures of neurons in future work. Cultures of stem cells also could be tested using the system to determine how mechanical stresses prompt the cells to differentiate into specific types of tissues, Ziaie said.

"You cannot stretch solid metal beyond a few percent because it will break, but we've been able to stretch these liquid platforms more than 40 percent of their original size," Ziaie said.

Findings are detailed in a paper being presented Monday (Jan. 26) during the 22nd IEEE International Conference on Micro Electro Mechanical Systems. The conference, sponsored by the Institute of Electrical and Electronics Engineers, will be in Sorrento, Italy.

"We demonstrated that the platform is biocompatible with human aortic muscle cells and mice heart cells," Ziaie said. "The cells adhered well to the polymer surface during mechanical strain and survived near and on the electrodes after two days of incubation. The platform also maintained its electrical capabilities after being stretched 100 times."

Purdue researchers designed and fabricated the platform at the Birck Nanotechnology Center in Purdue's Discovery Park. Stanford researchers grew cardiac muscle cell cultures on the device and tested the platform.

"We now hold the record for how much you can stretch an electrical conductor," Ziaie said.

Source: Purdue University

Explore further: ONR tests new glasses for augmented reality system with Marines

Related Stories

Training pig skin cells for neural development

May 01, 2015

A pig's skin cells may hold the key to new treatments and cures for devastating human neurological diseases. Researchers from the University of Georgia's Regenerative Bioscience Center have discovered a process ...

New transitional stem cells discovered

Apr 16, 2015

Pre-eclampsia is a disease that affects 5 to 8 percent of pregnancies in America. Complications from this disease can lead to emergency cesarean sections early in pregnancies to save the lives of the infants and mothers. ...

Voltage tester for beating cardiac cells

Feb 17, 2015

For the first time, scientists have succeeded in recording the current in membrane channels of contracting cardiac cells. To do this, the scientists combined an atomic force microscope with a widely used ...

Novel tissue substitute made of high-tech fibers

Apr 01, 2015

Regenerative medicine uses cells harvested from the patient's own body to heal damaged tissue. Fraunhofer researchers have developed a cell-free substrate containing proteins to which autologous cells bind ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.