Stem cells used to reverse paralysis in animals

January 28, 2009

A new study has found that transplantation of stem cells from the lining of the spinal cord, called ependymal stem cells, reverses paralysis associated with spinal cord injuries in laboratory tests. The findings show that the population of these cells after spinal cord injury was many times greater than comparable cells from healthy animal subjects. The results open a new window on spinal cord regenerative strategies. The study is published in the journal Stem Cells.

The transplanted cells were found to proliferate after spinal cord injury and were recruited by the specific injured area. When these cells were transplanted into animals with spinal cord injury, they regenerated ten times faster while in the transplant subject than similar cells derived from healthy control animals.

Spinal cord injury is a major cause of paralysis, and the associated trauma destroys numerous cell types, including the neurons that carry messages between the brain and the rest of the body. In many spinal injuries, the cord is not actually severed, and at least some of the signal-carrying nerve cells remain intact. However, the surviving nerve cells may no longer carry messages because oligodendrocytes, which comprise the insulating sheath of the spinal cord, are lost.

The regenerative mechanism discovered was activated when a lesion formed in the injured area. After a lesion formed in the transplant subject, the stem cells were found to have a more effective ability to differentiate into oligodendrocytes and other cell types needed to restore neuronal function.

Currently, there are no effective therapies to reverse this disabling condition in humans. However, the presence of these stem cells in the adult human spinal cords suggests that stem cell-associated mechanisms might be exploited to repair human spinal cord injuries.

Given the serious social and health problems presented by diseases and accidents that destroy neuronal function, there is an ever-increasing interest in determining whether adult stem cells might be utilized as a basis of regenerative therapies.

"The human body contains the tools to repair damaged spinal cords. Our work clearly demonstrates that we need both adult and embryonic stem cells to understand our body and apply this knowledge in regenerative medicine," says Miodrag Stojkovic, co-author of the study. "There are mechanisms in our body which need to be studied in more detail since they could be mobilized to cure spinal cord injuries."

Source: Wiley

Explore further: Stem cell therapy heals injured mouse brain

Related Stories

A clear view of the nervous system

August 22, 2016

A new and versatile imaging technique enables researchers to trace the trajectories of whole nerve cells and provides extensive insights into the structure of neuronal networks.

Origin of the long body of snakes discovered

August 8, 2016

For many years, researchers have been trying to understand the origin of the exceptionally long trunks that characterize the body of snakes. This is a mystery in terms of animal development that can shed light on the mechanisms ...

New microfluidic chip replicates muscle-nerve connection

August 3, 2016

MIT engineers have developed a microfluidic device that replicates the neuromuscular junction—the vital connection where nerve meets muscle. The device, about the size of a U.S. quarter, contains a single muscle strip and ...

Stem cell treatment for Lou Gehrig's disease may be safe

June 29, 2016

A phase II clinical trial in people with amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, suggests that transplanting human stem cells into the spinal cord may be done safely. The research is published in the ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.