Stars Forming Just Beyond Black Hole’s Grasp at Galactic Center

January 5, 2009
This 0.6 by 0.7-degree infrared photograph of the galactic center shows a large population of old, red stars. However, the discovery of two young protostars within a few light-years of the center of the Milky Way shows that stars can form there despite powerful gravitational tides due to the supermassive black hole. Credit: 2MASS/E. Kopan (IPAC/Caltech)

(PhysOrg.com) -- The center of the Milky Way presents astronomers with a paradox: it holds young stars, but no one is sure how those stars got there. The galactic center is wracked with powerful gravitational tides stirred by a 4 million solar-mass black hole. Those tides should rip apart molecular clouds that act as stellar nurseries, preventing stars from forming in place. Yet the alternative - stars falling inward after forming elsewhere - should be a rare occurrence.

Using the Very Large Array of radio telescopes, astronomers from the Harvard-Smithsonian Center for Astrophysics and the Max Planck Institute for Radio Astronomy have identified two protostars located only a few light-years from the galactic center. Their discovery shows that stars can, in fact, form very close to the Milky Way's central black hole.

"We literally caught these stars in the act of forming," said Smithsonian astronomer Elizabeth Humphreys. She presented the finding today at a meeting of the American Astronomical Society in Long Beach, Calif.

The center of the Milky Way is a mysterious region hidden behind intervening dust and gas, making it hard to study. Visible light doesn't make it out, leaving astronomers no choice but to use other wavelengths like infrared and radio, which can penetrate dust more easily.

Humphreys and her colleagues searched for water masers—radio signals that serve as signposts for protostars still embedded in their birth cocoons. They found two protostars located seven and 10 light-years from the galactic center. Combined with one previously identified protostar, the three examples show that star formation is taking place near the Milky Way's core.

Their finding suggests that molecular gas at the center of our galaxy must be denser than previously believed. A higher density would make it easier for a molecular cloud's self-gravity to overcome tides from the black hole, allowing it to not only hold together but also collapse and form new stars.

The discovery of these protostars corroborates recent theoretical work, in which a supercomputer simulation produced star formation within a few light-years of the Milky Way's central black hole.

"We don't understand the environment at the galactic center very well yet," Humphreys said. "By combining observational studies like ours with theoretical work, we hope to get a better handle on what's happening at our galaxy's core. Then, we can extrapolate to more distant galaxies."

Provided by Harvard-Smithsonian Center for Astrophysics

Explore further: Will our black hole eat the Milky Way?

Related Stories

Will our black hole eat the Milky Way?

August 16, 2016

Want to hear something cool? There's a black hole at the center of the Milky Way. And not just any black hole, it's a supermassive black hole with more than 4.1 million times the mass of the Sun.

How a star cluster ruled out MACHOs

August 10, 2016

Are massive black holes hiding in the halos of galaxies, making up the majority of the universe's mysterious dark matter? This possibility may have been ruled out by a star cluster in a small galaxy recently discovered orbiting ...

An algorithm to image black holes

June 6, 2016

Researchers from MIT's Computer Science and Artificial Intelligence Laboratory and Harvard University have developed a new algorithm that could help astronomers produce the first image of a black hole.

Recommended for you

Rosetta captures comet outburst

August 25, 2016

In unprecedented observations made earlier this year, Rosetta unexpectedly captured a dramatic comet outburst that may have been triggered by a landslide.

Rocky planet found orbiting habitable zone of nearest star

August 24, 2016

An international team of astronomers including Carnegie's Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.