Stars Forming Just Beyond Black Hole’s Grasp at Galactic Center

January 5, 2009
This 0.6 by 0.7-degree infrared photograph of the galactic center shows a large population of old, red stars. However, the discovery of two young protostars within a few light-years of the center of the Milky Way shows that stars can form there despite powerful gravitational tides due to the supermassive black hole. Credit: 2MASS/E. Kopan (IPAC/Caltech)

( -- The center of the Milky Way presents astronomers with a paradox: it holds young stars, but no one is sure how those stars got there. The galactic center is wracked with powerful gravitational tides stirred by a 4 million solar-mass black hole. Those tides should rip apart molecular clouds that act as stellar nurseries, preventing stars from forming in place. Yet the alternative - stars falling inward after forming elsewhere - should be a rare occurrence.

Using the Very Large Array of radio telescopes, astronomers from the Harvard-Smithsonian Center for Astrophysics and the Max Planck Institute for Radio Astronomy have identified two protostars located only a few light-years from the galactic center. Their discovery shows that stars can, in fact, form very close to the Milky Way's central black hole.

"We literally caught these stars in the act of forming," said Smithsonian astronomer Elizabeth Humphreys. She presented the finding today at a meeting of the American Astronomical Society in Long Beach, Calif.

The center of the Milky Way is a mysterious region hidden behind intervening dust and gas, making it hard to study. Visible light doesn't make it out, leaving astronomers no choice but to use other wavelengths like infrared and radio, which can penetrate dust more easily.

Humphreys and her colleagues searched for water masers—radio signals that serve as signposts for protostars still embedded in their birth cocoons. They found two protostars located seven and 10 light-years from the galactic center. Combined with one previously identified protostar, the three examples show that star formation is taking place near the Milky Way's core.

Their finding suggests that molecular gas at the center of our galaxy must be denser than previously believed. A higher density would make it easier for a molecular cloud's self-gravity to overcome tides from the black hole, allowing it to not only hold together but also collapse and form new stars.

The discovery of these protostars corroborates recent theoretical work, in which a supercomputer simulation produced star formation within a few light-years of the Milky Way's central black hole.

"We don't understand the environment at the galactic center very well yet," Humphreys said. "By combining observational studies like ours with theoretical work, we hope to get a better handle on what's happening at our galaxy's core. Then, we can extrapolate to more distant galaxies."

Provided by Harvard-Smithsonian Center for Astrophysics

Explore further: X-ray point source discovered at the center of a distant dwarf galaxy Henize 2-10

Related Stories

What is galactic evolution?

October 7, 2016

On a clear night, you can make out the band of the Milky Way in the night sky. For millennia, astronomers looked upon it in awe, slowly coming to the realization that our Sun was merely one of billions of stars in the galaxy. ...

What happens when galaxies collide?

October 3, 2016

We don't want to scare you, but our own Milky Way is on a collision course with Andromeda, the closest spiral galaxy to our own. At some point during the next few billion years, our galaxy and Andromeda – which also happen ...

Prototypical active galaxy Arakelian 120 observed by Swift

October 18, 2016

(—Astronomers using NASA's Swift space observatory, have conducted a long-term monitoring campaign of a prototypical active galaxy, designated Arakelian 120 (Ark 120 for short). These observations reveal crucial ...

Will our black hole eat the Milky Way?

August 16, 2016

Want to hear something cool? There's a black hole at the center of the Milky Way. And not just any black hole, it's a supermassive black hole with more than 4.1 million times the mass of the Sun.

Black hole hidden within its own exhaust

September 15, 2016

Supermassive black holes, millions to billions of times the mass of our Sun, are found at the centers of galaxies. Many of these galactic behemoths are hidden within a thick doughnut-shape ring of dust and gas known as a ...

Recommended for you

Gaia spies two temporarily magnified stars

October 28, 2016

While scanning the sky to measure the position of over one billion stars in our Galaxy, ESA's Gaia satellite has detected two rare instances of stars whose light was temporarily boosted by other celestial objects passing ...

More than 15,000 near-Earth objects and counting

October 28, 2016

The international effort to find, confirm and catalogue the multitude of asteroids that pose a threat to our planet has reached a milestone: 15 000 discovered – with many more to go.

How planets like Jupiter form

October 28, 2016

Young giant planets are born from gas and dust. Researchers of ETH Zürich and the Universities of Zürich and Bern simulated different scenarios relying on the computing power of the Swiss National Supercomputing Centre ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.