Organic soils continue to acidify despite reduction in acidic deposition

January 12, 2009

Following the Clean Air Act Amendments of 1970 and 1990 acidic deposition in North America has declined significantly since its peak in 1973. Consequently, research has shifted from studying the effects of acidic deposition to the recovery of these aquatic and terrestrial ecosystems. Regional-scale studies have focused primarily on aquatic systems and while many of these ecosystems are showing signs of chemical recovery (increases in acid neutralizing capacity and pH, decreases in sulfate and aluminum concentrations), recovery is slower than expected based on the magnitude of the decline in acid deposition.

Researchers have long suspected that acidification of soils in these watersheds has slowed the recovery of aquatic ecosystems. Unfortunately, very few studies have examined change in soil chemistry. As a result our understanding of how soils have responded to decreases in acidic deposition at the regional scale is limited.

Researchers at Syracuse University sampled soils in 139 watersheds in the northeastern United States in 2001 that had previously been studied as part of the Direct/Delayed Response Project in 1984. The study showed that over the 17-yr interval, median base saturation in the Oa-horizon decreased from 56% in 1984 to 33% in 2001, while effective cation-exchange capacity, normalized to the soil carbon concentration, showed no significant change. The change in base saturation was the result of almost equivalent changes in carbon-normalized exchangeable calcium (CaN) and exchangeable aluminum (AlN). The median CaN declined by more than 50%, from 23.5 to 10.6 cmolc/kgC, while median AlN more than doubled, from 8.8 to 21.3 cmolc/kgC. This research, to be published in the January-February issue of the Soil Science Society of America Journal, was made possible by the financial support of the William M. Keck Foundation.

A somewhat surprising result was that the Central New England/Maine subregion, the subregion that historically has received the lowest inputs of acid deposition of any of the subregions, showed the greatest declines in exchangeable base cations and base saturation. This area also exhibited the greatest increases in carbon-normalized exchangeable acidity (acidityN) and AlN and was the only subregion to experience a statistically significant decrease in pH. Lead author Richard Warby explained, "It is possible that the acidification of soils in this subregion was delayed relative to the other subregions because of the strong regional gradient in acidic inputs from west to east."

The researchers believe that the observed trend in soil acidification is likely to continue until acidic inputs decline to the point where soil base cation pools are sufficient to neutralize them. Warby concluded, "Until then we are likely to see the continued sluggish chemical recovery of surface waters and a continuing threat to the health of forests, with additional declines in base status likely to increase the number of sites exhibiting lower forest productivity and or vulnerability to winter injury."

View the study abstract at soil.scijournals.org/cgi/content/abstract/73/1/274 .

Source: Soil Science Society of America

Explore further: Researchers find fat turns into soap in sewers, contributes to overflows

Related Stories

Cleaner air may be driving water quality in Chesapeake Bay

July 26, 2016

A new study suggests that improvements in air quality over the Potomac watershed, including the Washington, D.C., metro area, may be responsible for recent progress on water quality in the Chesapeake Bay. Scientists from ...

New drug aids gout patients not helped by standard treatments

August 16, 2011

Injections of pegloticase, a modified porcine enzyme, can produce significant and sustained clinical improvements in 2 out of 5 patients with chronic gout that is resistant to conventional therapies, researchers report in ...

Climate Change Seeps into the Sea

October 24, 2008

(PhysOrg.com) -- Good news has turned out to be bad. The ocean has helped slow global warming by absorbing much of the excess heat and heat-trapping carbon dioxide that has been going into the atmosphere since the start of ...

Saturn System Moves Oxygen From Enceladus to Titan

July 2, 2010

(PhysOrg.com) -- Complex interactions between Saturn and its satellites have led scientists using NASA's Cassini spacecraft to a comprehensive model that could explain how oxygen may end up on the surface of Saturn's icy ...

Recommended for you

Scientists examine bacterium found 1,000 feet underground

December 8, 2016

Pioneering work being carried out in a cave in New Mexico by researchers at McMaster University and The University of Akron, Ohio, is changing the understanding of how antibiotic resistance may have emerged and how doctors ...

New studies take a second look at coral bleaching culprit

December 7, 2016

Scientists have called superoxide out as the main culprit behind coral bleaching: The idea is that as this toxin build up inside coral cells, the corals fight back by ejecting the tiny energy- and color-producing algae living ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.