Models simulate nitrate dynamics in Garonne, Southwest France

January 5, 2009

The over-enrichment of fresh, transitional, and marine waters with nitrogen (N) can lead to problems associated with eutrophication, such as a change in species composition of aquatic plants and nuisance algal blooms. In this context, dynamic models of flow and water quality are required to aid the implementation of the Water Framework Directive and to understand the impacts of environmental change.

Scientists from CNRS in Toulouse (France) and the University of Reading (U.K.) described the spatially and temporally complex flow and N dynamics of a major European watershed, the Garonne (62,700 km2) located in southwest France, using multivariate analysis before applying the linked rainfall-runoff HBV and the Integrated Catchment Model of Nitrogen (INCA-N) models to simulate daily flow and N dynamics.

This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed under the Water Framework Directive. Results from the study were published in the November-December 2008 issue of the Journal of Environmental Quality.

The spatial and temporal dynamics in the stream water NO3-N concentrations in the Garonne watershed were first described and related to variations in climate, land management, and effluent point-sources using multivariate statistics (PCA, RDA).

Building on this, INCA-N simulations were in accordance with expected flow and seasonal N patterns. In the low and mid reaches of the Garonne, the NO3-N concentrations exhibited a clear seasonal pattern with a peak concentration coinciding with fertilizer applications; that is, results highlighted that 75% of the NO3-N river load in the lowlands came from arable farming. In the upper reaches, climate controls on flow were the most important in determining the NO3-N concentrations which exhibited dilution patterns during high spring flows.

This study reinforces the interest of using semi-distributed models that represent key hydrological pathways, the spatial variations in inputs to land cover types, and a representation of the terrestrial and aquatic biochemical cycles. Thus, semi-distributed models can be used successfully to simulate the seasonal and decadal flow and water quality dynamics from mountainous headwaters to the lowlands in the largest European catchments, at large spatial (>300 km2) and temporal (≥ monthly) scales using available national datasets.

View the abstract of this study at jeq.scijournals.org/cgi/content/abstract/37/6/2155 .

Source: American Society of Agronomy

Explore further: Study provides scenarios for assessing long-term benefits of climate action

Related Stories

Fingerprinting erosion

September 2, 2015

You may have noticed that after a heavy rainstorm, creeks and rivers often turn the color of chocolate milk. That cloudy brown color is caused by sediments—weathered rock material ranging in size from tiny granules of mud ...

Report analyzes new option for hurricane protection

September 1, 2015

Past discussions of hurricane-protection options for the Houston-Galveston region have focused on constructing a floodgate at the mouth of either Galveston Bay or the Houston Ship Channel. In its latest analysis of options ...

VIMS reports intense and widespread algal blooms

September 1, 2015

Water sampling and aerial photography by researchers at William & Mary's Virginia Institute of Marine Science show that the algal blooms currently coloring lower Chesapeake Bay are among the most intense and widespread of ...

Scientists, tribe study shrinking Washington state glacier

August 28, 2015

Mauri Pelto digs his crampons into the steep icy slope on Mount Baker in Washington state and watches as streams of water cascade off the thick mass of bare, bluish ice. Every 20 yards, the water carves vertical channels ...

Recommended for you

Ice sheets may be more resilient than thought

September 3, 2015

Sea level rise poses one of the biggest threats to human systems in a globally warming world, potentially causing trillions of dollars' worth of damages to flooded cities around the world. As surface temperatures rise, ice ...

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.