Researchers First to 'See' Reactive Oxygen Species in Vital Enzyme

January 10, 2009
Two complementary types of data collected from the same crystal provide compelling evidence for the trapped reactive oxygen intermediate in choline oxidase. On the left are the spectroscopic changes observed in a single crystal of choline oxidase upon x-ray exposure at low temperature. It shows that the sample rapidly changes upon irradiation to x-rays. On the right are the unbiased 1.8 angstrom resolution electron density maps and the resulting interpretation of the atomic structures for the two possible reactive oxygen species. The electronic and atomic structures correlate almost perfectly within the crystal. In the absence of either part of the complementary experimental data, the interpretation of the results would have remained much more speculative.

(PhysOrg.com) -- Using two simultaneous light-based probing techniques at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, a team of researchers has illuminated important details about a class of enzymes involved in everything from photosynthesis to the regulation of biological clocks.

The interdisciplinary team has a broad interest in flavoproteins, which were first discovered in the 1930s and derive from riboflavin, or vitamin B2. These proteins are now known to catalyze a wide range of biochemical reactions, including those that use molecular oxygen (O2) to help convert food into energy in animals, plants, fungi, and in some types of bacteria - a process known as oxygen activation.

Although scientists have determined more than 1,200 crystal structures of flavoproteins, they've been blind to exactly what oxygen activation looks like within these enzymes. Specifically, researchers have been unable to determine the structure of the flavoprotein's reactive oxygen intermediate, a molecular complex that often forms halfway through important biochemical reactions. These intermediates possess high chemical potential energy, which is necessary to complete many critical but difficult-to-catalyze reactions in biology. Such intermediates typically have a lifetime of only a few milliseconds and are therefore very hard to observe using traditional synchrotron methods.

"Flavoproteins represent one of only a handful of ways that nature activates molecular oxygen, a process that's important for all life on the planet," said Brookhaven biophysicist Allen Orville. "We've determined structures of some oxygen intermediates involved in several important enzymes that assist in this process. But no one has ever seen an oxygen intermediate attached to the flavin. Until now."

As reported in the January 9, 2009, online edition of Biochemistry, Orville and colleagues from Georgia State University, Georgia Institute of Technology, and the University of Miami have used a new facility at Brookhaven's National Synchrotron Light Source (NSLS) to identify two possible oxygen intermediates in the flavoprotein, choline oxidase.

The researchers accomplished their work by combining two popular synchrotron techniques - x-ray diffraction and optical absorption spectroscopy - into one setup. By shining beams of powerful x-rays and visible light on the same region of the crystallized flavoprotein, two different but complementary sets of information are received. This allows the scientists to correlate the electronic structure of the enzyme - which gives details about chemical activities - with its three-dimensional atomic structure.

"The ability to collect multiple types of data from the same sample at the same time is a unique opportunity," Orville said. "It takes less time and it means you never have to move the sample and risk altering it in any way. It also removes many potential ambiguities that either technique alone cannot resolve."

To stabilize the flavoprotein intermediate, the researchers kept it at an extremely low temperature - about -280 degrees Fahrenheit. When exposed to the x-rays, the cold flavoprotein rapidly accepts electrons liberated in the sample by the x-ray beam. This starts the enzyme reaction, which progresses a bit further and then becomes trapped in its reactive intermediate state. Using the combined data, the group identified two possible intermediate structures. Further experiments will help determine which is the true intermediate.

Orville is installing additional complementary techniques at the NSLS. Planning also is underway for several beamlines with multiple complementary techniques at the National Synchrotron Light Source II, a new, proposed Brookhaven facility that will produce x-rays up to 10,000 times brighter than those at the NSLS. The hope is to provide a means for researchers to simultaneously obtain three or four different types of data from one sample.

Source: Brookhaven National Laboratory

Explore further: Why platinum nanoparticles become less effective catalysts at small sizes

Related Stories

Ancient magma movements responsible for Gascoyne minerals

August 20, 2015

Geologists have used a technique developed at Curtin University to determine magmatic fluids came up from the earth's mantle repeatedly over the past 1600 million years, depositing minerals along a fault line in the Gascoyne ...

Combustion's mysterious "QOOH" radicals exposed

August 11, 2015

Researchers can now discriminate between the previously unidentified hydroperoxyalkyl radicals found in the early stages of the combustion process from similar compounds, thanks to data from the Advanced Light Source at Lawrence ...

Researchers investigate increased ocean acidification

August 3, 2015

The primary cause of global ocean acidification is the oceanic absorption of CO2 from the atmosphere. Although this absorption helps to mitigate some of the effects of anthropogenic climate change, it has resulted in a reduction ...

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
not rated yet Jan 10, 2009
what i've always wondered about is how do these high intensity electromagnetic beams affect the behaviour of the protein constructs?
minorwork
not rated yet Jan 10, 2009
I'm certainly not certain.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.