Nicotine activates more than just the brain's pleasure pathways

Jan 22, 2009

Duke University Medical System researchers have discovered there are differing taste pathways for nicotine, which could provide a new approach for future smoking-cessation products.

"We learned some of nicotine's secrets," said Albino Oliveira-Maia, M.D., Ph.D., a postdoctoral fellow of the Duke Department of Neurobiology. "This is the first study to explore both the peripheral taste pathways activated by nicotine, and how these pathways are integrated in sensory areas of the brain." The peripheral nervous system refers to nerves that are outside of the brain and spinal cord.

Using genetic engineering and measurements of nervous system activity in mice, the researchers found that nicotine sends signals directly to the brain's sensory systems by several pathways, similar to the way taste is perceived.

These findings complement what is known about the effects of nicotine in the dopamine pathway. This is the classic pleasure pathway in the brain, much studied by addiction experts. "Our study in no way contradicts prior findings about nicotine and dopamine," Oliveira-Maia said. "Our findings add to what is known and suggest new approaches for further study."

The findings appeared in the PNAS Early Edition slated for January 19.

"One reason that our findings are interesting is because they relate to previous work that looked at humans with lesions in the insula region of the brain - they had an easier time giving up cigarettes than most people," Oliveira-Maia said. "We found that a part of the insula, the gustatory cortex, has robust responses to nicotine and a capacity to integrate diverse peripheral information to create a unique sensory representation for nicotine."

One taste pathway the Duke researchers uncovered involves nicotinic acetylcholine receptors (nAChR), which scientists previously proposed were taste receptors for nicotine. The researchers found a previously unknown link between these receptors and activity in the taste region of the insula.

They then found a second pathway, the peripheral Trpm5 protein pathway - one that helps animals sense a bitter taste. Mice which had their Trpm5 pathway deleted were unresponsive to several different tastes, including bitterness, but they could still sense the presence of nicotine. "The mice preferred plain water to the nicotine solution, suggesting that there would be a second taste pathway in play, besides the one that had been knocked out," Oliveira-Maia said. The researchers then measured nerve activity in the chorda tympani (CT), which is a branch of the facial nerve that serves the taste buds in the front of the tongue and found that activity in CT nerve fibers increased when nicotine was put on the mice's tongues.

Looking ahead, Oliveira-Maia said that drugs thath block the nAChR receptors are now being used in the treatment of tobacco addiction, mainly because of their effects on the central nervous system, "but it is possible they could also modify the sensory effects of cigarette smoke."

Source: Duke University Medical Center

Explore further: Life-prolonging protein could inhibit ageing diseases

Related Stories

Architects to hatch Ecocapsule as low-energy house

14 hours ago

Where people call home depends on varied factors, from poverty level to personal philosophy to vanity to community pressure. Ecocapsule appears to be the result of special factors, a team of architects applying ...

California farmers agree to drastically cut water use

18 hours ago

California farmers who hold some of the state's strongest water rights avoided the threat of deep mandatory cuts when the state accepted their proposal to voluntarily reduce consumption by 25 percent amid ...

Apple may deliver ways to rev up the iPad, report says

18 hours ago

MacRumors last month said that the latest numbers from market research firm IDC's Worldwide Quarterly Tablet Tracker revealed Apple stayed on as the largest vendor in a declining tablet market. The iPad ...

Recommended for you

Life-prolonging protein could inhibit ageing diseases

May 29, 2015

Researchers have found a molecule that plays a key link between dietary restriction and longevity in mammals. This discovery may lead to the development of new therapies to inhibit age-related diseases.

How sleep helps us learn and memorize

May 28, 2015

Sleep is important for long lasting memories, particularly during this exam season. Research publishing in PLOS Computational Biology suggests that sleeping triggers the synapses in our brain to both streng ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.