Milky Way a Swifter Spinner, More Massive, New Measurements Show

Jan 05, 2009
This artist's conception of the Milky Way shows the four-arm spiral structure confirmed by recent VLBA distance measurements (shown by green and blue dots). The data show that the Milky Way is spinning faster than previously believed. Our galaxy therefore is more massive than astronomers thought, matching Andromeda's heft. Red dots mark the galactic center and the location of our solar system. Image: Robert Hurt, IPAC; Mark Reid, CfA, NRAO/AUI/NSF

(PhysOrg.com) -- Fasten your seat belts -- we're faster, heavier, and more likely to collide than we thought. Astronomers making high-precision measurements of the Milky Way say our home Galaxy is rotating about 100,000 miles per hour faster than previously understood.

That increase in speed, said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics, increases the Milky Way's mass by 50 percent, bringing it even with the Andromeda Galaxy. "No longer will we think of the Milky Way as the little sister of the Andromeda Galaxy in our Local Group family."

The larger mass, in turn, means a greater gravitational pull that increases the likelihood of collisions with the Andromeda galaxy or smaller nearby galaxies.

Our Solar System is about 28,000 light-years from the Milky Way's center. At that distance, the new observations indicate, we're moving at about 600,000 miles per hour in our Galactic orbit, up from the previous estimate of 500,000 miles per hour.

The scientists are using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to remake the map of the Milky Way. Taking advantage of the VLBA's unparalleled ability to make extremely detailed images, the team is conducting a long-term program to measure distances and motions in our Galaxy. They reported their results at the American Astronomical Society's meeting in Long Beach, California.

The scientists observed regions of prolific star formation across the Galaxy. In areas within these regions, gas molecules are strengthening naturally-occuring radio emission in the same way that lasers strengthen light beams. These areas, called cosmic masers, serve as bright landmarks for the sharp radio vision of the VLBA. By observing these regions repeatedly at times when the Earth is at opposite sides of its orbit around the Sun, the astronomers can measure the slight apparent shift of the object's position against the background of more-distant objects.

"The new VLBA observations of the Milky Way are producing highly-accurate direct measurements of distances and motions," said Karl Menten of the Max Planck Institute for Radio Astronomy in Germany, a member of the team. "These measurements use the traditional surveyor's method of triangulation and do not depend on any assumptions based on other properties, such as brightness, unlike earlier studies."

The astronomers found that their direct distance measurements differed from earlier, indirect measurements, sometimes by as much as a factor of two. The star-forming regions harboring the cosmic masers "define the spiral arms of the Galaxy," Reid explained. Measuring the distances to these regions thus provides a yardstick for mapping the Galaxy's spiral structure.

"These direct measurements are revising our understanding of the structure and motions of our Galaxy," Menten said. "Because we're inside it, it's difficult for us to determine the Milky Way's structure. For other galaxies, we can simply look at them and see their structure, but we can't do this to get an overall image of the Milky Way. We have to deduce its structure by measuring and mapping," he added.

The VLBA can fix positions in the sky so accurately that the actual motion of the objects can be detected as they orbit the Milky Way's center. Adding in measurements of motion along the line of sight, determined from shifts in the frequency of the masers' radio emission, the astronomers are able to determine the full 3-dimensional motions of the star-forming regions. Using this information, Reid reported that "most star-forming regions do not follow a circular path as they orbit the Galaxy; instead we find them moving more slowly than other regions and on elliptical, not circular, orbits."

The researchers attribute this to what they call spiral density wave shocks, which can take gas in a circular orbit, compress it to form stars, and cause it to go into a new, elliptical orbit. This, they explained, helps to reinforce the spiral structure.

Reid and his colleagues found other surprises, too. Measuring the distances to multiple regions in a single spiral arm allowed them to calculate the angle of the arm. "These measurements," Reid said, "indicate that our Galaxy probably has four, not two, spiral arms of gas and dust that are forming stars." Recent surveys by NASA's Spitzer Space Telescope suggest that older stars reside mostly in two spiral arms, raising a question of why the older stars don't appear in all the arms. Answering that question, the astronomers say, will require more measurements and a deeper understanding of how the Galaxy works.

Provided by Harvard-Smithsonian Center for Astrophysics

Explore further: NASA telescopes set limits on space-time quantum 'foam'

Related Stories

Hubble observes one-of-a-kind star nicknamed 'Nasty'

May 21, 2015

Astronomers using NASA's Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is ...

Scientists discover the fluffiest galaxies

May 14, 2015

An international team of researchers led by Pieter van Dokkum at Yale University have used the W. M. Keck Observatory to confirm the existence of the most diffuse class of galaxies known in the universe. ...

Hubble Finds Giant Halo Around the Andromeda Galaxy

May 07, 2015

Scientists using NASA's Hubble Space Telescope have discovered that the immense halo of gas enveloping the Andromeda galaxy, our nearest massive galactic neighbor, is about six times larger and 1,000 times ...

Astronomers unveil the farthest galaxy

May 05, 2015

An international team of astronomers led by Yale University and the University of California-Santa Cruz have pushed back the cosmic frontier of galaxy exploration to a time when the universe was only 5% of ...

Recommended for you

NASA telescopes set limits on space-time quantum 'foam'

3 hours ago

A team of scientists has used X-ray and gamma-ray observations of some of the most distant objects in the universe to better understand the nature of space and time. Their results set limits on the quantum ...

Shining message about the end of the Dark Ages

5 hours ago

An international team, including researchers from the Centre for Astronomy of Heidelberg University (ZAH), has discovered three "cosmic Methusalems" from the earliest years of the universe. These unusual stars are about 13 ...

The kinematics of merging galaxies

6 hours ago

The unprecedented sensitivity of space telescopes has powered a revolution over the past decade in our understanding of galaxies in the young universe during its first billion years of existence. These primitive ...

Hubble video shows shock collision inside black hole jet

20 hours ago

When you're blasting though space at more than 98 percent of the speed of light, you may need driver's insurance. Astronomers have discovered for the first time a rear-end collision between two high-speed ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
1 / 5 (1) Jan 05, 2009
I dont believe Meneten
Thecis
not rated yet Jan 06, 2009
And which part are you specifically referring to and why? I agree with him that the structure of other galaxies are easier to determine because we can look at them (yeah, I know, I'm being an ass but I want to it specifically).
LuckyBrandon
not rated yet Jan 06, 2009
the end is nigh...what, like 8 billion years from now :D
superhuman
not rated yet Jan 14, 2009
I wonder if humanity will ever get a chance to look at the Galaxy from enough distance to see it whole, coasting in the void.
LuckyBrandon
not rated yet Jan 24, 2009
if we do, lets hope that dark energy doesnt throw our asses straight back to our galaxy :)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.