Light-driven plasmonic nanoswitch may pave way for new computers, tech

January 16, 2009

(PhysOrg.com) -- The ability to stream videos online with the quality of high-end home theater systems, and to run computer programs a thousand times faster, are some of the future advances being made possible by a Penn State research team led by Tony Jun Huang, the James Henderson assistant professor of engineering science and mechanics.

Huang's Biofunctionalized NanoElectroMechanicalSystems (BioNEMS) group has developed a working plasmonic switch, the first step in building optical computers with frequencies 100,000 times greater than the ones of current microprocessors.

Huang explained, "Computer chips have circuits. Today's electronic circuits are good and small, but they're slow and have low capacity, relatively speaking. To make the big jump, we need to develop photonic circuits. Photonic circuits use light to carry information, similar to the technology behind fiber optic cables, and have higher speeds and higher capacities. But the problem with photonic circuits is that they're too big."

The answer, Huang said, is to create something that combines the speed and capacity of photonic circuits with the small size of electronic circuits — a plasmonic circuit.

''Plasmonic circuits are a hybrid of electronics and photonics,'' he stated. ''They can transmit electrons and light at the same time.''

Huang's BioNEMS group has been focusing on the first step towards a plasmonic circuit puzzle: the plasmonic switch.

''In electronic circuits, transistors amplify and switch electric current to realize two different states: ones and zeros,'' he said. ''It's the same for plasmonic circuits where plasmonic transistors and switches are required.''

The plasmonic switches designed so far haven't been very efficient, the engineer stated. ''Few people have made plasmonic switches. They have used chemicals or electricity to do the switching. Using chemicals is very slow and would produce waste because you have two chemicals that have to react. It's just not practical.

"Using electricity is better, but we want to make our whole system modulated by light. So using electricity to drive it is not as compatible as a light-driven device as we're proposing.''

Huang's team, which includes postdoctoral researcher Vincent Hsiao and graduate students Yuebing Zheng and Bala Krishna Juluri, has done just that, creating a light-driven plasmonic switch. Molecules in the group's plasmonic switch change shape, causing the device's liquid crystals to align or de-align, in essence changing from a one to a zero.

The work has already caused a stir in the scientific community. It has been featured as the cover image of the Sep. 17, 2008, issue of the journal Advanced Materials. It also was recently highlighted in the journal Nature Photonics.

''There's still a long way to go,'' cautioned Huang. He characterizes the team's work as more fundamental research instead of applied work. ''There are a lot of questions we have not been able to answer at this moment.''

The BioNEMS team will continue its work in plasmonic switches, including investigating different nanomaterials that might work better.

Huang thinks that it may be at least five years before a true working plasmonic circuit might be created.

''Practically, we have to be able to integrate these plasmonic switches with other components, such as plasmonic waveguides, before we can demonstrate a plansmonic circuit.''

Provided by Penn State

Explore further: New semiconductor material made from black phosphorus may be candidate to replace silicon in future tech

Related Stories

Graphene supercurrents go ballistic

July 29, 2015

Researchers with Europe's Graphene Flagship have demonstrated superconducting electric currents in the two-dimensional material graphene that bounce between sheet edges without scattering. This first direct observation of ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

Smaller and smarter antennas for military use

July 24, 2015

When it comes to protecting the men and women of the armed forces, University of Wisconsin-Madison researcher Nader Behdad focuses his work on an obstacle most people wouldn't associate with combat: the physical limitations ...

Recommended for you

Quantum matter stuck in unrest

July 31, 2015

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

Robotic insect mimics nature's extreme moves

July 30, 2015

The concept of walking on water might sound supernatural, but in fact it is a quite natural phenomenon. Many small living creatures leverage water's surface tension to maneuver themselves around. One of the most complex maneuvers, ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

el_gramador
not rated yet Jan 16, 2009
Is anyone else thinking of those light crystal based systems on SG-1 Stargate?
gmurphy
not rated yet Jan 16, 2009
I'm impressed with the blunt honesty of the lead scientist

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.