Lancets Flights Probe Supersonic Shockwaves

Jan 22, 2009

(PhysOrg.com) -- NASA is concluding a series of flight tests to measure shock waves generated by an F-15 jet in an effort to validate computer models that could be used in designing quieter supersonic aircraft.

The Lift and Nozzle Change Effects on Tail Shock, or Lancets, project embodies research aimed at enabling the development of commercial aircraft that can fly faster than the speed of sound without generating annoying sonic booms over land. Supersonic flight over land generally is prohibited because of annoyances caused by their noise.

A sonic boom is created by shock waves that form on the front and rear of an aircraft. The boom loudness is related to the strength of the shock waves. The formation of the shock waves is dependent on the aircraft geometry and the way in which the wing generates lift.
During the flight tests at NASA's Dryden Flight Research Center in Edwards, Calif., one of two F-15s generally followed 100 feet to 500 feet below and behind the other, measuring the strength of the leading aircraft's shock waves at various distances using special instruments. Global Positioning System relative positioning was used to guide the pilot of the probing aircraft to a test position and for accurate reporting of measurement locations.

Lancets is the latest in a series of NASA projects investigating the effects of aircraft geometry and lift on the strength of shock waves.

NASA previously teamed with private companies to study the effect of aircraft shape on the strength of shock waves and whether adding a nose spike to an aircraft affects the strength of its shock waves in order to validate design tools for aircraft fore-bodies.
A NASA F-15B was used as the test aircraft for the flights. It was ideally suited for Lancets because its canards and engine nozzles can be adjusted in flight.

Canards are small airfoils in front of the wing that are designed to increase the aircraft's performance. Adjusting the canards changes the lift of the main wing, which varies how much wing lift contributes to the strength of the shock waves. This cannot be done on a conventional aircraft without making expensive modifications to the wing. Adjusting the engine nozzles alters the exhaust plumes from the engines, which varies how much the rear of the aircraft contributes to the strength of the shock waves.

A second NASA F-15B was the probing aircraft. It was fitted with a special nose spike for taking shock strength measurements.
The flight results will be used by computational fluid dynamics researchers at NASA's Langley Research Center in Hampton, Va.; NASA's Ames Research Center at Moffett Field, Calif.; and at Dryden to develop and validate improved tools that incorporate aft-shockwave effects in the prediction of sonic booms. The flight data also will be made available to interested university and industry partners in order to further their research objectives.

The research is funded and managed by the Fundamental Aeronautics Program, part of NASA's Aeronautics Research Mission Directorate at NASA Headquarters in Washington.

Provided by NASA

Explore further: Rosetta spacecraft sees sinkholes on comet

Related Stories

Understanding the oscillations of magnetic white dwarfs

Jun 26, 2015

Researchers at the Paris-Saclay "Astrophysics, Instrumentation, Modelling" laboratory (AIM – CNRS/CEA/Université Paris Diderot), of the CEA's Military Applications Division (DAM) and from the Universe and Theories Laboratory ...

Sonic booms in nerves and lipid membranes

Jan 20, 2015

(Phys.org)—Neurons might not be able to send signals as fast as electrons in wires or photons in fiber, but what if they can communicate using miniature sonic booms? That would be quite a revolutionary ...

Two spiral galaxies in the process of merging

Dec 12, 2014

At this time of year, there are lots of gatherings often decorated with festive lights. When galaxies get together, there is the chance of a spectacular light show as is the case with NGC 2207 and IC 2163

Supersonic laser-propelled rockets

Oct 29, 2014

Scientists and science fiction writers alike have dreamt of aircrafts that are propelled by beams of light rather than conventional fuels. Now, a new method for improving the thrust generated by such laser-propulsion ...

Recommended for you

Rosetta spacecraft sees sinkholes on comet

1 minute ago

The European Space Agency's Rosetta spacecraft first began orbiting comet 67P/Churyumov-Gerasimenko in August 2014. Almost immediately, scientists began to wonder about several surprisingly deep, almost perfectly ...

Me and my world: The human factor in space

2 hours ago

The world around us is defined by how we interact with it. But what if our world was out of this world? As part of NASA's One-Year Mission, researchers are studying how astronauts interact with the "world" ...

Radar guards against space debris

4 hours ago

Space debris poses a growing threat to satellites and other spacecraft, which could be damaged in the event of a collision. A new German space surveillance system, schedu- led to go into operation in 2018, will help to prevent ...

Why we need to keep adding leap seconds

5 hours ago

Today at precisely 10am Australian Eastern Standard time, something chronologically peculiar will take place: there'll be an extra second between 09:59:59 and 10:00:00.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.