Researchers discover gene that increases susceptibility to Crohn's disease

January 8, 2009

Researchers at McGill University, the Research Institute of the McGill University Health Centre (RI MUHC) and the McGill University and Génome Québec Innovation Centre, along with colleagues at other Canadian and Belgian institutions, have discovered DNA variations in a gene that increases susceptibility to developing Crohn's disease. Their study was published in the January issue of the journal Nature Genetics.

The study was led by McGill PhD candidate Alexandra-Chloé Villani under the supervision of Dr. Denis Franchimont and Dr. Thomas Hudson. Dr. Franchimont, now with the Erasme Hospital in Brussels, Belgium, was a Canada Research Chair formerly affiliated with the Gastroenterology Dept. of the MUHC. Dr. Hudson, former Director of the McGill University and Génome Québec Innovation Centre, is now the President and Scientific Director of the Ontario Institute for Cancer Research (OICR), located in Toronto.

The researchers pinpointed DNA sequence variants in a gene region called NLRP3 that are associated with increased susceptibility to Crohn's disease. Crohn's is a chronic relapsing inflammatory disease of the digestive system that can affect any part of the gastrointestinal tract. Patients can suffer from a number of different symptoms in various combinations, including abdominal pain, bloody diarrhea, fever, vomiting and weight loss. Rarer complications include skin manifestations, arthritis and eye inflammation.

"Although the exact cause of Crohn's disease is still unknown, both environmental and genetic factors are known to play a critical role in the pathogenesis of the disease," Dr. Franchimont said.

Crohn's disease is found throughout the world. However, it appears to be most common in North America and northern Europe, and Canada has one of the highest incidence rates in the world. Crohn's affects between 400,000 and 600,000 people in North America.

The 400 square metres of the intestinal absorptive area is the largest single surface in or on the human body, and it is covered by billions of bacteria of the intestinal microflora living in the gastrointestinal tract.

"The single layer of cells lining your intestinal digestive tract is thus constantly exposed to high levels of bacteria and pathogens," Villani explained. "These cells must recognize and respond appropriately to the harmful bacteria while maintaining tolerance to the non-pathogenic 'good' bacteria that make up your intestinal microbial flora. This is the central challenge of the digestive immune system, which needs to balance defence versus tolerance."

"The protein encoded by the Crohn's disease susceptibility gene NLRP3, cryopyrin, is an intracellular bacteria sensor that plays a key role in initiating immune response," explained Villani. Based on their results, researchers theorize the bacterial sensor cryopyrin is probably defective in some patients, and doesn't correctly recognize the presence of harmful bacteria.

"When the digestive immune system's counter-attack is insufficient to clear the threat," Ms. Villani continued, "there is a bacterial infiltration in the intestinal wall through the first line of defence mechanisms. The digestive immune system will again try to repel the threat, but the effort may not be sufficient, and this usually leads to a vicious cycle that results in chronic inflammation in the intestinal wall. And that is Crohn's disease."

"This gene also plays a central role in the regulation of fever, which is one of the most primitive defence mechanisms that exists in humans to fight the surrounding pathogenic bacteria," Dr. Hudson added. "DNA sequence variations in the NLRP3 gene are also known to be responsible for hereditary periodic fever syndromes."

"Previously published genome-wide association studies have already detected more than 30 distinct Crohn's genetic factors, but these only explain about one-fifth of Crohn's disease heritability", said Dr. Franchimont.

Though these results will not lead to any new short-term treatments for Crohn's, Dr. Franchimont is confident that in the longer term it will benefit patient care. "Studies like this one give us a better understanding of key pathways and pathogenic mechanisms involved in Crohn's disease," he said. "Now that we are aware of the role of bacterial sensors in the disease, steps can be taken to develop a new treatment strategy."

Source: McGill University

Explore further: Company patents technology to feed cattle from waste

Related Stories

Company patents technology to feed cattle from waste

September 29, 2015

The phrase "squeeze until the very last drop" literally came true for Biotectra, a Mexican company that managed to extract nutrients from organic waste and transform them into a main ingredient for cattle food.

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Olympic teams to swim, boat in Rio's filth

July 30, 2015

Athletes competing in next year's Summer Olympics here will be swimming and boating in waters so contaminated with human feces that they risk becoming violently ill and unable to compete in the games, an Associated Press ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.