Energy-efficient water purification

Jan 14, 2009

Water and energy are two resources on which modern society depends. As demands for these increase, researchers look to alternative technologies that promise both sustainability and reduced environmental impact. Engineered osmosis holds a key to addressing both the global need for affordable clean water and inexpensive sustainable energy according to Yale researchers.

Yale doctoral student Robert McGinnis and his advisor Menachem Elimelech, Chair of Chemical and Environmental Engineering, have designed systems that harness the power of osmosis to harvest freshwater from non-potable sources, including seawater and generate electricity from low-temperature heat sources, such as waste heat from conventional power plants.

Yale University is commercializing their desalination technology through a newly-established company, Oasys. Their approach, which requires only one-tenth the electric energy used with conventional desalination systems, was featured in the December issue of Environmental Science & Technology.

"The ideal solution," says Elimelech, "is a process that effectively utilizes waste heat."

According to the authors, desalination and reuse are the only options for increasing water supply beyond that which is available through the hydrologic cycle — the continuous movement of water on, above, and below the surface of the Earth. However, conventional desalination and reuse technologies use substantial energy.

Using a new twist on an old technology, the engineers are employing "forward osmosis," which exploits the natural diffusion of water through a semi-permeable membrane. Their process "draws" pure water from its contaminants to a solution of concentrated salts, which can easily be removed with low heat treatment — effectively desalinating or removing contaminants from water with little energy input.

Another application of engineered osmosis the Yale researchers are pioneering, the osmotic heat engine, may be used to generate electrical energy. Elimelech and McGinnis say that it is possible to produce electricity economically from lower-temperature heat sources, including industrial waste heat, using a related method — pressure-retarded osmosis. In this closed loop process, the "draw" solution is held under high hydraulic pressure. As water moves into the pressurized draw solution, the pressure of the expanded volume is released through a turbine to generate electrical energy. The applied hydraulic pressure can be recovered by a pressure exchanger like those used in modern reverse osmosis desalination plants.

"The cost of producing electricity by this method could be competitive with existing means of power production" says Elimelech.

Citation: Environmental Science & Technology 42: 8625-29 (2008) doi:10.1021/es800812m

Source: Yale University

Explore further: Our new anti-earthquake technology could protect cities from destruction

Related Stories

What is the habitable zone?

Jun 30, 2015

The weather in your hometown is downright uninhabitable. There's scorching heatwaves, annual tyhpoonic deluges, and snow deep enough to bury a corn silo.

NASA missions monitor a waking black hole

18 hours ago

NASA's Swift satellite detected a rising tide of high-energy X-rays from the constellation Cygnus on June 15, just before 2:32 p.m. EDT. About 10 minutes later, the Japanese experiment on the International ...

Recommended for you

Focused energy of lasers breaks microscopic adhesion

19 hours ago

Small objects tend to cling to everything. It's why parents dread hosting parties that involve confetti. It's why glitter is fun for crafts—until it finds its way onto everything else you touch.

Insect decoys could protect ash trees

20 hours ago

Emerald ash borers have no trouble reproducing themselves as they have now spread through half the United States, but duplicating effective emerald ash borer decoys is not quite as easy. Now, engineers have ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.