Embryonic Heart Cells Thrive Only in an Environment That's Just Right

January 7, 2009

(PhysOrg.com) -- Cellular engineers at the University of Pennsylvania have determined that cardiomyocytes, the specialized cells that form the heart muscle, thrive when cultured in an environment that mimics their own elastic nature but falter, weaken or die when “grown” on stiffer or softer materials.

The study’s methods and analyses demonstrate that individual heart cells, similar in character to those derived from embryonic stem cells and induced pluripotent stem cells, are affected by physical forces at the cellular level and require the proper myocardial environment to grow and potentially repair damaged heart muscle, a key goal of stem cell and cardiovascular research. It also highlights the need for stem cell science to focus on physical parameters such as fibrosis as well as the mechanics of microenvironments to optimize cell therapy and new muscle growth.

In healthy myocardium, cardiomyocytes attach to a collagen-based extracellular matrix that must be sufficiently flexible for actomyosin forces to pump the heart. The elasticity of the extracellular matrix is an insoluble cue for many cells, influencing cell shape, protein expression and organization, as well as differentiation.

Dennis Discher and a team from Penn’s School of Engineering and Applied Science and School of Medicine isolated cardiomyocytes and placed them on substrates of varying flexibility made with hydrogels.

Stiffer substrates, the kind that mimic fibrotic scarring, produce heart cells that overstrain themselves and fail to stitch their proteins together to form heart muscle. The cells deform, but the actin filaments eventually pop free like shards of metal in an overworked engine. The resulting cells form unhealthy myofibrils and progressively lose their rhythmic beating.

On very soft substrates, the cells beat for days in culture but, much like a body builder with too little weight on the bench press, have done too little work to form the toned muscle and striated fibers for healthy muscle.

The perfect substrate, one that mimics the elasticity of normal heart tissue, provides an environment optimal for transmitting contractile work to the matrix and for promoting actomyosin striation and thus healthy and mature heart fibers. The matching strains between cell and matrix allow for proteins to piece together properly.

The team employed a “cysteine shotgun” as a structural marker to tag cellular proteins that experience structural changes, implying dynamic differences in intracellular protein structures that depend on the stiffness of the substrate.

The research builds on prior studies by the Discher Lab, which demonstrated that undifferentiated stem cells will differentiate depending upon the elasticity of the substrate on which they are grown. In a previous study, Discher’s team showed that stem cells placed on a stiff substrate like an infracted heart would mimic the stiffness and develop the characteristics not of heart cells, but of bone. Both studies reinforce the notion that stem cell differentiation is highly sensitive to matrix elasticity.

The study was inspired by ongoing research at Penn into the physical forces of cells and the well-known fibrotic rigidification and impairment of cardiac output that follows a heart attack or other trauma to the heart muscle.

“Embryonic heart cells are independent and self-contained, with all the proteins to contract, divide and repair themselves,” Christine Carag-Krieger, a doctoral candidate and lead co-author of the study, said. “However, prior research has determined that scarring of heart tissue, such as that occurring during a heart attack, inhibits the cell’s ability to put heart muscle myofibers back together with its usual series of protein interactions.”

The research, supported by the National Institutes of Health, the Ashton Foundation Pre-doctoral Fellowship Fund and an NIH-NHLBI Training Grant Fellowship, appeared in the Journal of Cell Science.

Provided by University of Pennsylvania

Explore further: Researchers mass-producing stem cells to satisfy the demands of regenerative medicine

Related Stories

Mimicking the body on a chip for new drug testing

June 10, 2015

Scientists in an EU project have developed a microfluidic chip that simultaneously analyses the reactions of several human organ tissues when they come into contact with candidates for new drugs. The ground-breaking device ...

Watching worms will help humans age more gracefully

May 26, 2015

The plot of many a science fiction TV series or movie revolves around the premise that people traveling long distances in space age more slowly than their counterparts on Earth. Now, tiny worms who spent time aboard the International ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Binary star system precisely timed with pulsar's gamma-rays

July 31, 2015

Pulsars are rapidly rotating compact remnants born in the explosions of massive stars. They can be observed through their lighthouse-like beams of radio waves and gamma-rays. Scientists at the Max Planck Institute for Gravitational ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.