New study identifies how ebola virus avoids the immune system

January 27, 2009
Scanning electron microscope image of Ebola virions (spaghetti-like filaments) on the surface of a tetherin-expressing cell (center). The other three cells seen in this image (upper right and upper and lower left) do not have the filamentous virus on their surfaces. Credit: Paul Bates, Ph.D., University of Pennsylvania School of Medicine

(PhysOrg.com) -- Researchers at the University of Pennsylvania School of Medicine have likely found one reason why the Ebola virus is such a powerful, deadly, and effective virus. Using a cell culture model for Ebola virus infection, they have discovered that the virus disables a cellular protein called tetherin that normally can block the spread of virus from cell to cell.

"Tetherin represents a new class of cellular factors that possess a very different means of inhibiting viral replication," says study author Paul Bates, PhD, Associate Professor of Microbiology at the University of Pennsylvania School of Medicine. "Tetherin is the first example of a protein that affects the virus replication cycle after the virus is fully made and prevents the virus from being able to go off and infect the next cell." These findings appear online this week in the Proceedings of the National Academy of Sciences.

When a cell is infected with a virus like Ebola, which is deadly to 90 percent of people infected, the cell is pirated by the virus and turned into a production factory that makes massive quantities on new virions. These virions are then released from that cell to infect other cells and promote the spreading infection.

Tetherin is one of the immune system's responses to a viral infection. If working properly, tetherin stops the infected cell from releasing the newly made virus, thus shutting down spread to other cells. However, this study shows that the Ebola virus has developed a way to disable tetherin, thus blocking the body's response and allowing the virus to spread.

"This information gives us a new way to study how tetherin works," says Bates. "Binding of a protein produced by Ebola to tetherin apparently inactivates this cellular factor. Understanding how the Ebola protein blocks the activity of tetherin may facilitate the design of therapeutics to inhibit this interaction, allowing the cell's natural defense systems to slow down viral replication and give the animal or person a chance to mount an effective antiviral response and recover."

Previous research had found that tetherin plays a role in the immune system's response to HIV-1, a retrovirus, and that tetherin is also disabled by HIV. These new studies reveal that human cells also use this defense against other types of viruses, such as Ebola, that are not closely related to HIV-1. "Because we see such broad classes of viruses that are affected by tetherin, it's possible that all enveloped viruses are targets of this antiviral system," says Bates. "If so, then understanding how tetherin works and how viruses escape from the effect of tetherin will be very important."

Provided by University of Pennsylvania

Explore further: Cell phones help track of flu on campus

Related Stories

Cell phones help track of flu on campus

August 18, 2015

New methods for analyzing personal health and lifestyle data captured through wearable devices or smartphone apps can help identify college students at risk of catching the flu, say researchers at Duke University and the ...

The potential in your pond

August 14, 2015

Scientists at the John Innes Centre have discovered that Euglena gracilis, the single cell algae which inhabits most garden ponds, has a whole host of new, unclassified genes which can make new forms of carbohydrates and ...

Determining America's most lethal animal

August 13, 2015

Animal attacks have been in the news a lot. Late last year, a 22-year-old student in New Jersey was killed by a black bear he had been photographing. This summer, swimmers off the coast of North Carolina have suffered a record ...

New fluorescent polymer makes deformation visible

August 13, 2015

A new type of polymer can show that it has changed shape. After exposure to UV light, the chain-like molecules emit a different colour of light. This opens a new pathway for research into how viruses function in a cell and ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

SgntZim
not rated yet Jan 27, 2009
Very interesting article

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.