Researchers construct a device that mimics one of nature's key transport machines

Jan 06, 2009
Researchers construct a device that mimics one of nature’s key transport machines
Artificial transportation. A schematic representation of the genuine (top) and artificial (bottom) nuclear pore complexes. By experimenting with a nuclear pore complex “mimic,” researchers have shown how transport factors (red), which help proteins move through the complex, are assisted by proteins called FG-nucleoporins (twisting lines).

(PhysOrg.com) -- To help protect its genes, a cell is highly selective about what it allows to move in and out of its nucleus. Yet that choosiness is regulated by just a thin barrier, perforated with tiny transport machines called nuclear pore complexes: protein-coated holes surrounded by flimsy, unfolded protein strands. Now, by building an artificial mimic of this membrane barrier and its pores, scientists have discovered a key to its selectivity and, in the process, have found a practical tool for drug development.

More than 450 proteins make up a single nuclear pore complex. A year ago, Rockefeller University’s Michael P. Rout and Brian T. Chait, along with their colleague Andrej Sali at the University of California, San Francisco, published a detailed structure of the nuclear pore complex, showing for the first time how all of those proteins fit together. Their study showed that, at its simplest, the pore’s organization consists of an anemone-like configuration, with folded proteins forming the hole itself and unfolded, tentacle-like proteins called FG-nucleoporins around the opening.

Now, in their latest study, the researchers are looking at the functionality of the complex at its most basic configuration: a membrane pockmarked with FG-nucleoporin-coated holes. “We wondered whether we could create a simple artificial mimic, made of just a tiny hole and some of these tentacle proteins,” Chait says. “So we built one to see if it really works.”

To do so, postdoctoral associate Tijana Jovanovic-Talisman started with simple polycarbonate membranes strewn with little holes and coated with a thin layer of gold, and then attached a type of FG-nucleoporin to the membrane. Using confocal microscopy, she tested how efficiently proteins crossed this artificial membrane. Then she added transport factors, which bind to the FG-nucleoporins and selectively ferry cargo across the membrane barrier. The researchers saw that transport factors crossed the artificial membrane much faster than proteins alone, just as occurs in the natural nuclear pore complex. Without the transport factors, that selectivity largely disappeared. The research gave the scientists and their collaborators at Los Alamos National Laboratory and the University of Münster in Germany a new perspective on the cell’s nuclear transport mechanism. “We’re beginning to think of the transport factors in a different way,” Jovanovic-Talisman says, “as if they’re a mobile part of the nuclear pore complex machine.”

The results, published online in Nature, do more than explain the minimum needs for the nuclear pore complex’s exquisite selectivity. The artificial pore could be used to test the importance of pore shape and size. And it has potential biomedical applications, too. Because it can separate particular proteins out of very complex mixtures, the device could have enormous implications for biopharmaceuticals. “It’s a device that mimics what nature does and has some beautiful properties, in that it decides what passes through a hole in a very complex mixture,” Chait says.

The team is now working toward making the synthetic pore as selective and efficient as the natural one. “Our machine doesn’t work as well as the nuclear pore complex. We’ve had only three years, while nature’s had billions of years to do this,” Chait says. “We’ve got lots of work to do.”

Paper: Nature online: December 21, 2008 (www.nature.com/nature/journal/vaop/ncurrent/abs/nature07600.html)

Provided by Rockefeller University

Explore further: The inside story: MRI imaging shows how plants can inspire new engineering materials

Related Stories

eBay-PayPal breakup set for July

2 hours ago

US online giant eBay said Friday its board approved the planned spinoff of its PayPal online payments unit, which will trade as an independent company July 20.

Is the universe ringing like a crystal glass?

3 hours ago

Many know the phrase "the big bang theory." There's even a top television comedy series with that as its title. According to scientists, the universe began with the "big bang" and expanded to the size it ...

Smithsonian to improve ethics policies on research funding

3 hours ago

After revelations that a scientist failed to disclose his funding sources for climate change research, the Smithsonian Institution said Friday it is improving its ethics and disclosure policies to avoid conflicts of interest.

Recommended for you

Restored streams take 25 years or longer to recover

2 hours ago

New research has found that the number of plant species growing just next to restored streams can take up to 25 years to increase above those channelized during the timber floating era. This is according ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.