Dead Stars Tell Story of Planet Birth

January 5, 2009
This artist's concept illustrates a dead star, or "white dwarf," surrounded by the bits and pieces of a disintegrating asteroid. Image: NASA/JPL-Caltech

(PhysOrg.com) -- Astronomers have turned to an unexpected place to study the evolution of planets -- dead stars. Observations made with NASA's Spitzer Space Telescope reveal six dead "white dwarf" stars littered with the remains of shredded asteroids. This might sound pretty bleak, but it turns out the chewed-up asteroids are teaching astronomers about the building materials of planets around other stars.

So far, the results suggest that the same materials that make up Earth and our solar system's other rocky bodies could be common in the universe. If the materials are common, then rocky planets could be, too.

"If you ground up our asteroids and rocky planets, you would get the same type of dust we are seeing in these star systems," said Michael Jura of the University of California, Los Angeles, who presented the results today at the American Astronomical Society meeting in Long Beach, Calif. "This tells us that the stars have asteroids like ours -- and therefore could also have rocky planets." Jura is the lead author of a paper on the findings accepted for publication in the Astronomical Journal.

Asteroids and planets form out of dusty material that swirls around young stars. The dust sticks together, forming clumps and eventually full-grown planets. Asteroids are the leftover debris. When a star like our sun nears the end of its life, it puffs up into a red giant that consumes its innermost planets, while jostling the orbits of remaining asteroids and outer planets. As the star continues to die, it blows off its outer layers and shrinks down into a skeleton of its former self -- a white dwarf.

Sometimes, a jostled asteroid wanders too close to a white dwarf and meets its demise -- the gravity of the white dwarf shreds the asteroid to pieces. A similar thing happened to Comet Shoemaker Levy 9 when Jupiter's gravity tore it up, before the comet ultimately smashed into the planet in 1994.

Spitzer observed shredded asteroid pieces around white dwarfs with its infrared spectrograph, an instrument that breaks light apart into a rainbow of wavelengths, revealing imprints of chemicals. Previously, Spitzer analyzed the asteroid dust around two so-called polluted white dwarfs; the new observations bring the total to eight.

"Now, we've got a bigger sample of these polluted white dwarfs, so we know these types of events are not extremely rare," said Jura.

In all eight systems observed, Spitzer found that the dust contains a glassy silicate mineral similar to olivine and commonly found on Earth. "This is one clue that the rocky material around these stars has evolved very much like our own," said Jura.

The Spitzer data also suggest there is no carbon in the rocky debris -- again like the asteroids and rocky planets in our solar system, which have relatively little carbon.

A single asteroid is thought to have broken apart within the last million years or so in each of the eight white-dwarf systems. The biggest of the bunch was once about 200 kilometers (124 miles) in diameter, a bit larger than Los Angeles County.

Jura says the real power of observing these white dwarf systems is still to come. When an asteroid "bites the dust" around a dead star, it breaks into very tiny pieces. Asteroid dust around living stars, by contrast, is made of larger particles. By continuing to use spectrographs to analyze the visible light from this fine dust, astronomers will be able to see exquisite details -- including information about what elements are present and in what abundance. This will reveal much more about how other star systems sort and process their planetary materials.

"It's as if the white dwarfs separate the dust apart for us," said Jura.

Other authors are Ben Zuckerman at the University of California, Los Angeles, and Jay Farihi at Leicester University, England.

Provided by JPL/NASA

Explore further: Planet-devouring star reveals possible limestone crumbs

Related Stories

Planet-devouring star reveals possible limestone crumbs

June 14, 2016

A group of researchers using the W. M. Keck Observatory have discovered a planet-like body that may have been encrusted in limestone and is having its surface layers devoured by its deceased host star. In addition to extending ...

Cosmic 'Death Star' is destroying a planet

October 21, 2015

The Death Star of the movie Star Wars may be fictional, but planetary destruction is real. Astronomers announced today that they have spotted a large, rocky object disintegrating in its death spiral around a distant white ...

Solar systems around dead Suns?

April 20, 2009

(PhysOrg.com) -- Using NASA’s Spitzer Space Telescope, an international team of astronomers have found that at least 1 in 100 white dwarf stars show evidence of orbiting asteroids and rocky planets, suggesting these objects ...

Watery, rocky planets may be common in the Milky Way

April 13, 2010

(PhysOrg.com) -- An international team of astronomers have discovered compelling evidence that rocky planets are commonplace in our Galaxy. Leicester University scientist and lead researcher Dr Jay Farihi surveyed white dwarfs, ...

Recommended for you

Dark matter may be smoother than expected

December 7, 2016

Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team ...

Giant radio flare of Cygnus X-3 detected by astronomers

December 7, 2016

(Phys.org)—Russian astronomers have recently observed a giant radio flare from a strong X-ray binary source known as Cygnus X-3 (Cyg X-3 for short). The flare occurred after more than five years of quiescence of this source. ...

Saturn's bulging core implies moons younger than thought

December 7, 2016

Freshly harvested data from NASA's Cassini mission reveals that Saturn's bulging core and twisting gravitational forces offer clues to the ages of the planet's moons. Astronomers now believe that the ringed planet's moons ...

Cassini transmits first images from new orbit

December 7, 2016

NASA's Cassini spacecraft has sent to Earth its first views of Saturn's atmosphere since beginning the latest phase of its mission. The new images show scenes from high above Saturn's northern hemisphere, including the planet's ...

New evidence for a warmer and wetter early Mars

December 7, 2016

A recent study from ESA's Mars Express and NASA's Mars Reconnaissance Orbiter (MRO) provides new evidence for a warm young Mars that hosted water across a geologically long timescale, rather than in short episodic bursts ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Thecis
not rated yet Jan 06, 2009
When examening objects it is not rare at all to take things apart and look at the pieces...
So why wouldn't it work with solar systems. In my opinion it is a great way to look at how other systems are build up.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.