City of Newark first in nation using cars to power grid

January 21, 2009
Shot of electric car owned by Willett Kempton, UD Professor of Marine Policy. Kempton plugs in the car at his home every night and on campus during the day. When not in service, he says, it stores enough electricity to power 7-8 houses on his block for 30 minutes. Credit: Kathy Atkinson, University of Delaware

This month, the City of Newark, Delaware became the first electric utility in the US to use a car to store and provide power for the local electric grid.

The vehicle, which runs on electricity alone, is specifically designed to store energy and improve grid reliability. University of Delaware researchers helped develop the concept, called Vehicle-to-Grid (V2G). With the City of Newark's approval, the UD team is now conducting V2G testing at two outlets within the City's service territory.

Cities including San Francisco and Austin, TX have seriously considered the idea, but Newark (population: 30,000) is the first to officially put it into action.

This video is not supported by your browser at this time.
B-roll shows electric car, inside and out, plug and electric meter.
University of Delaware Associate Professor of Marine Policy Willett Kempton explained how the technology benefits the grid operator. Currently, there is no energy storage built into the electric grid system, meaning that electricity usage and electricity generation must be simultaneous. As fluctuating renewable sources, such as solar and wind power, become a larger fraction of our electric generation, energy storage will help grid operators smooth power output fluctuations.

"Wind tends to blow stronger at night when the electric load is low," he said. "If electric vehicles charged at night with wind power, the grid operator could use the energy in the batteries, when vehicles aren't needed for driving and are plugged in, to help maintain grid reliability. The vehicle owner would then be paid for providing these energy services at a greater value than what they paid for the electricity."

Those savings add up to thousands per year.

Kempton plugs his car in at his Newark home, and while it sits, he says, it stores enough energy to power 7 to 8 homes on his block for approximately 30 minutes.

Kempton and his team plan to have a fleet of six vehicles by the end of 2009, two at UD and four operated by the state of Delaware. The test fleet will be used to demonstrate multiple V2G vehicles working together and supplying energy as a single power plant. The City of Newark's approval paves the way for larger-scale adoption of V2G electric vehicles nationwide, helping to advance the nation's electric grid infrastructure and reduce oil consumption.

The City of Newark is responsible for ensuring the energy source will not feed power back to the grid when power lines are down. This approval process for V2G electric vehicles is similar to the process used to certify solar photovoltaic systems. It is critical to maintaining the safety of line workers during a power outage.

Sam Sneeringer, the City's Assistant Electric Director, describes the reasoning behind the certification process by saying, "Solar PV systems and V2G vehicles are tested to the same standards and treated the same within the city's approval process because electricity from the car's batteries or from a solar panel is indistinguishable to the electric grid and presents the same potential safety risks to linemen."

The University of Delaware and utility company, Delmarva Power, conducted initial testing of this safety requirement before the vehicle was thoroughly tested to IEEE standards at the National Renewable Energy Laboratory in Golden, Colo.

Source: University of Delaware

Explore further: Power grid forecasting tool reduces costly errors

Related Stories

Power grid forecasting tool reduces costly errors

July 30, 2015

Accurately forecasting future electricity needs is tricky, with sudden weather changes and other variables impacting projections minute by minute. Errors can have grave repercussions, from blackouts to high market costs. ...

States can lower electric bills with clean power plan

July 28, 2015

The U.S. electric system faces an array of challenges. Sluggish demand growth and the rise of solar power challenge the ability of utilities to recover their costs. The digital economy requires reliable power quality, and ...

Indoor candle device is designed to keep phones charged

July 17, 2015

An emergency generator for your phone at time of power outages? That's on offer in the form of a crowdfunded-campaign item called Candle Charger. It offers USB power when you need it, designed to keep phones souped up when ...

Wave energy device is watched for clean power in Hawaii

July 9, 2015

The U.S. government continues its interest in wave energy, saying it is "committed to supporting the growth of this emerging technology." Supporters of wave energy hope that it will one day be an important source of clean ...

Wind energy provides 8% of Europe's electricity

July 24, 2015

EU's grid connected cumulative capacity in 2014 reached 129 GW, meeting 8% of European electricity demand, equivalent to the combined annual consumption of Belgium, the Netherlands, Greece and Ireland. According to a JRC ...

Sunny, with a chance of nuclear bullets

July 23, 2015

In space, far above Earth's turbulent atmosphere, you might think the one thing you don't have to worry about is weather. But you would be wrong. Just ask the people charged with the safety of the Cloud-Aerosol Lidar and ...

Recommended for you

Sydney makes its mark with electronic paper traffic signs

July 28, 2015

Visionect, which is in the business of helping companies build electronic paper display products, announced that Sydney has launched e-paper traffic signs. The traffic signage integrates displays from US manufacturer E Ink ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Jan 21, 2009
So what happens if you want to take your vehicle while it is a "power source"? Would there enough of a charge left over for your needs? And what about the reduction in lifespan of your batteries, would they pay you for the depreciation as well? (To date, batteries have a limited amount of charge-discharge cycles).

The gov't would have to be involved in financially aiding car owners before most would be interested, I would think.
not rated yet Jan 21, 2009
Oh and the task of ensuring that the power from the vehicles doesn't feed back onto the grid in cases of downed power lines could easily be solved by having the power company send actual data out over the power-lines, between cycles, which would be sensed by the vehicles, which would only feed their power onto the grid in the presence of this signal.
5 / 5 (1) Jan 22, 2009
Those are the same questions I was wondering. I wouldn't want the power company continuously charging and discharging my expensive lithium/nickel cadmium battery.
5 / 5 (1) Jan 22, 2009
Wow that would suck pretty bad if it killed your batteries just because the power companies don't want to put battery storage systems in their own solar and wind plants. If it is deemed necessary by the government or a power company to keep a storage system, then they better have one besides the end users electric cars. In one way it seems like a nice idea just because it could prevent blackouts and brownouts in areas which have them, but these cars already have the batteries as their weakest, most needing replacement, part.
not rated yet Apr 13, 2009
And what about the reduction in lifespan of your batteries, would they pay you for the depreciation as well? ... The gov't would have to be involved in financially aiding car owners before most would be interested, I would think.

I hope not. Better to let the market take care of that. People will voluntarily make their car batteries available to the grid if the price is right.

That said, I have a suspicion that that price is a lot higher than advocates think it is. I ran the numbers on in-home lead-acid batteries for a proposed remote microgrid a couple of years ago, and IIRC discovered that cycle degradation adds up to over 50 cents per round-trip kWh.

In my view V2G can only work after a big battery breakthrough.

There's a reason why car manufacturers are mass-producing hybrids, but not plug-in hybrids. The batteries are very expensive and very easy to degrade if not managed very carefully. The Prius carefully maintains its battery charge in the 60-80% range. That's only 20% of the total capacity being used. They do that because going outside that range shortens the life of that very expensive battery. The battery is barely cost-effective when carefully managed in this way. The next battery breakthrough may make plug-in hybrids viable. But taking on the needs of the vehicle AND the grid is asking a lot. Batteries are not there yet.

And whatever battery we are using in the future, utilities would have to pay a premium above the deprecation, because people would be taking on the risk of not having a fully charged battery when they need it.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.