Chemists engineer plants to produce new compounds

Jan 19, 2009
Tissue of a periwinkle plant Photo: Donna Coveney

(PhysOrg.com) -- In work that could expand the frontiers of genetic engineering, MIT chemists have, for the first time, genetically altered a plant to produce entirely new compounds, some of which could be used as drugs against cancer and other diseases.

The researchers, led by Sarah O'Connor of the Department of Chemistry, produced the new compounds by manipulating the complex biosynthetic pathways of the periwinkle plant. This sort of manipulation, which O'Connor and her graduate student, Weerawat Runguphan, report in the Jan. 18 issue of Nature Chemical Biology, offers a new way to tweak potential drugs to make them less toxic (and/or more effective).

Genetic engineering is not new: Scientists have known for years how to get plants to resist pests and herbicides or to produce substances such as insecticides by inserting genes from other plants or animals. What is new, however, is the ability to induce plants to create new products by tinkering with the plants' own synthetic pathways.

O'Connor's laboratory has studied periwinkle for several years because it produces a variety of alkaloid compounds of pharmacological interest, including vinblastine, a drug commonly used to treat cancers such as Hodgkin's lymphoma.

Periwinkle also produces serpentines, which have shown promise as anti-cancer agents, and ajmalicine, which is used to treat hypertension. Other plant-produced compounds have shown pharmacological activity but are too toxic for use in humans.

The current work builds on research O'Connor and grad student Elizabeth McCoy reported two years ago. They found that periwinkle cell cultures could produce novel compounds if fed starting materials slightly different from their normal substrates.

"That inspired us to think about metabolic engineering in a much more sophisticated way," said O'Connor, the Latham Family Career Development Associate Professor of Chemistry. "We can virtually re-engineer the pathway."

O'Connor and Runguphan focused on an enzyme involved in an early step of the alkaloid synthesis pathway. The enzyme normally accepts a terpenoid called secologanin and tryptamine, an alkaloid, as substrates.

Another graduate student, Peter Bernhardt, engineered a mutant form of the enzyme that can accept tryptamine with a halogen (such as chlorine or bromine) attached. Runguphan grew genetically engineered plant cell cultures that produce the mutant enzyme and got them to synthesize several compounds that periwinkle plants would normally never produce.

The halogens could serve as points of attachment to add other novel chemical groups to the compounds, modifying their effectiveness and/or toxicity as drugs, said O'Connor.

So far all of the genetic engineering has been done in plant cell cultures, but Runguphan has started growing a tiny whole periwinkle plant with the mutant enzyme.

In the future, the researchers plan to use the same approach to produce additional compounds, in hopes of creating new and more effective drug candidates.

The research was funded by the National Science Foundation, the National Institutes of Health and the American Cancer Society.

Provided by MIT

Explore further: Video: Critter chemistry: Three amazing insect scientists

Related Stories

New clues into how stem cells get their identity

May 06, 2015

Scientists at the University of Copenhagen have identified one mechanism that explains how some stem cells choose to become a given cell type: the cells combine specific sets of proteins at precise positions ...

Near-perfect antibacterial materials

Feb 19, 2015

Ruthless with bacteria, harmless to human cells. New, durable antibacterial coatings of nanocomposites, developed at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, will in ...

Recommended for you

Video: Critter chemistry: Three amazing insect scientists

9 hours ago

There are an estimated 10 quintillion insects on the planet. While you may want to swat them all away, some of them are actually fascinating little scientists. In this week's Speaking of Chemistry, Matt Davenport ...

Vulnerability found in some drug-resistant bacteria

10 hours ago

Using a complex modeling program that helps analyze the physical dynamics of large, structurally complex protein molecules, a research team has made progress towards finding a weak spot in the architecture of a group of enzymes ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Jan 19, 2009
Danger, DANGER! We have almost learned what to touch and what to eat, (and not eat or touch!)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.